吉林大学学报(理学版)
吉林大學學報(理學版)
길림대학학보(이학판)
JOURNAL OF JILIN UNIVERSITY(SCIENCE EDITION)
2014年
3期
551-555
,共5页
吸引子传播算法%变异系数%特征赋权%聚类
吸引子傳播算法%變異繫數%特徵賦權%聚類
흡인자전파산법%변이계수%특정부권%취류
affinity propagation algorithm%coefficient of variation%feature weighing%clustering
基于传统吸引子传播算法,通过样本特征赋权,克服冗余信息的影响及给出新的相似性度量方法等策略,提出一种基于变异系数赋权的吸引子传播算法。实验结果表明,该算法在处理属性较多、信息重叠的样本时,不仅具有吸引子传播算法的快速、高效聚类特征,且聚类性能明显优于传统吸引子传播算法和K-均值等经典聚类算法。
基于傳統吸引子傳播算法,通過樣本特徵賦權,剋服冗餘信息的影響及給齣新的相似性度量方法等策略,提齣一種基于變異繫數賦權的吸引子傳播算法。實驗結果錶明,該算法在處理屬性較多、信息重疊的樣本時,不僅具有吸引子傳播算法的快速、高效聚類特徵,且聚類性能明顯優于傳統吸引子傳播算法和K-均值等經典聚類算法。
기우전통흡인자전파산법,통과양본특정부권,극복용여신식적영향급급출신적상사성도량방법등책략,제출일충기우변이계수부권적흡인자전파산법。실험결과표명,해산법재처리속성교다、신식중첩적양본시,불부구유흡인자전파산법적쾌속、고효취류특정,차취류성능명현우우전통흡인자전파산법화K-균치등경전취류산법。
An improved affinity propagation algorithm based on coefficient of variation was proposed via feature weighing of samples,which has overcome the impact of redundant information,and the new similarity measure method was proposed.The experimental results show that the proposed algorithm is not only quick and efficient but also better than the traditional affinity propagation algorithm and the classical K-means method for clustering when it was used to process the samples with more characteristics and attributes,and information overlap.