四川文理学院学报
四川文理學院學報
사천문이학원학보
SICHUAN UNIVERSITY OF ARTS AND SCIENCE JOURNAL
2012年
2期
17-20
,共4页
集染色%集色数%完全图%Halin图
集染色%集色數%完全圖%Halin圖
집염색%집색수%완전도%Halin도
set coloring%the set chromatic number%complete graph%Halin graph
对于非平凡连通图G,G的k集染色是指映射c:V(G)→Nk,对任意顶点v∈V(G),定义邻色集cN(v)={c(u)|u∈N(v)},若对uv∈E(G)有cN(u)≠cN(v),则称c为G的一个k集染色.满足上述条件的最小k值称为G的集色数,记为χs(G).为了更快更有效地给Halin图着色,采用集染色的着色方法,证明了当p≥4时,Halin图G(Cp,Tq)的集色数是3,并且还证明了对任意的Halin图G(Cp,Tq),有p+1≤q≤2p-2成立.
對于非平凡連通圖G,G的k集染色是指映射c:V(G)→Nk,對任意頂點v∈V(G),定義鄰色集cN(v)={c(u)|u∈N(v)},若對uv∈E(G)有cN(u)≠cN(v),則稱c為G的一箇k集染色.滿足上述條件的最小k值稱為G的集色數,記為χs(G).為瞭更快更有效地給Halin圖著色,採用集染色的著色方法,證明瞭噹p≥4時,Halin圖G(Cp,Tq)的集色數是3,併且還證明瞭對任意的Halin圖G(Cp,Tq),有p+1≤q≤2p-2成立.
대우비평범련통도G,G적k집염색시지영사c:V(G)→Nk,대임의정점v∈V(G),정의린색집cN(v)={c(u)|u∈N(v)},약대uv∈E(G)유cN(u)≠cN(v),칙칭c위G적일개k집염색.만족상술조건적최소k치칭위G적집색수,기위χs(G).위료경쾌경유효지급Halin도착색,채용집염색적착색방법,증명료당p≥4시,Halin도G(Cp,Tq)적집색수시3,병차환증명료대임의적Halin도G(Cp,Tq),유p+1≤q≤2p-2성립.
For a non - trivial connected graph G, let c: V(G)---+Nk be a vertex coloring of G where adjacent vertices may be col- ored the same. For a vertex v of G , the neighborhood color set cN(v) is the set of colors of the neighbors ofv. The coloring c is called a k set coloring if cN(u) #cN(v) for every pair u, v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number,x, (G) of G. It is proved that the set chromatic number of the Halin graph G( Co, Tq ) with p 34 is 3, and that for any a Halin graph G( Co, T ), there exists p + 1 q 〈2p - 2.