成都大学学报:自然科学版
成都大學學報:自然科學版
성도대학학보:자연과학판
Journal of Chengdu University (Natural Science)
2012年
1期
39-42
,共4页
P-内射环%WB-环%正则环%正交理想%特殊左零化子升链条件
P-內射環%WB-環%正則環%正交理想%特殊左零化子升鏈條件
P-내사배%WB-배%정칙배%정교이상%특수좌령화자승련조건
P-injective ring%WB-ring%regular ring%orthogonal ideal%the ascending chain condition for spe-cial left annihilators
研究了满足一定条件的p-内射环为WB-环的等价刻画.证明了如果只是非奇异的p-内射环,那么R只要满足条件之一:(a)R满足特殊左零化子的升链条件;(b)R不包含由有限非零主左理想构成的直和项;(c)R是cF环;(d)R是Goldie环.有如下等价:(1)R是WB-环;(2)对任何口∈R,有正交理想,I,J,使得a=ava=ava,这里u∈R,模,右可逆,FER模.,左可逆;(3)对任何a∈R,有正交理想,I,J和幂等元e∈R,使得a=eu=ev,这里u∈R模I右可逆,u∈R模J左可逆;(4)如果a=b,a,b∈R,则有正交理想,I,J使得av=ub,av=vb,其中u∈R模I右可逆,口∈R模.,左可逆.
研究瞭滿足一定條件的p-內射環為WB-環的等價刻畫.證明瞭如果隻是非奇異的p-內射環,那麽R隻要滿足條件之一:(a)R滿足特殊左零化子的升鏈條件;(b)R不包含由有限非零主左理想構成的直和項;(c)R是cF環;(d)R是Goldie環.有如下等價:(1)R是WB-環;(2)對任何口∈R,有正交理想,I,J,使得a=ava=ava,這裏u∈R,模,右可逆,FER模.,左可逆;(3)對任何a∈R,有正交理想,I,J和冪等元e∈R,使得a=eu=ev,這裏u∈R模I右可逆,u∈R模J左可逆;(4)如果a=b,a,b∈R,則有正交理想,I,J使得av=ub,av=vb,其中u∈R模I右可逆,口∈R模.,左可逆.
연구료만족일정조건적p-내사배위WB-배적등개각화.증명료여과지시비기이적p-내사배,나요R지요만족조건지일:(a)R만족특수좌령화자적승련조건;(b)R불포함유유한비령주좌이상구성적직화항;(c)R시cF배;(d)R시Goldie배.유여하등개:(1)R시WB-배;(2)대임하구∈R,유정교이상,I,J,사득a=ava=ava,저리u∈R,모,우가역,FER모.,좌가역;(3)대임하a∈R,유정교이상,I,J화멱등원e∈R,사득a=eu=ev,저리u∈R모I우가역,u∈R모J좌가역;(4)여과a=b,a,b∈R,칙유정교이상,I,J사득av=ub,av=vb,기중u∈R모I우가역,구∈R모.,좌가역.
Necessary and sufficient conditions under which a principal injective ring's equivalence is a WB-ring. It is proved that if R is a nonsingular and principal ring, R just satisfies one of the following con- ditions: (a) R satisfies the ascending chain condition for special left annihilators; (b) R does not contain a direct sum of an infinite number of non-zero principal left ideals; (c) R is a CF-ring; (d) R is a Goldie ring, then the following conditions are equivalent: (1) R is a WB-ring; (2) For any a E R ,there exists or- thogonal ideals I and J such that a = aua = ava, where u ∈R is fight invertible module I and v E R is left invertible module I; (3) For any a E R, there exists orthogonal ideals I, J and e = e^2∈ R such that a = eu = ev,whereu∈R is right invertible module I and v∈R is left invertible module J;(4) If a=b, a, b ∈ R, then there exists orthogonal ideals I, J such that au = ub, av = vb, where u E R is right invert- ible module I and v E R is left invertible module J.