广州大学学报:自然科学版
廣州大學學報:自然科學版
엄주대학학보:자연과학판
Journal og Guangzhou University:Natural Science Edition
2012年
1期
10-12
,共3页
闭Lindelsff映射%基一中紧映射%基一可数中紧
閉Lindelsff映射%基一中緊映射%基一可數中緊
폐Lindelsff영사%기일중긴영사%기일가수중긴
closed Lindelioff mapping%base-mesocompact mapping%base-countable mesocompact
引入了基一中紧映射,并证明了如下结果:①设,:x—l,是闭LindelSff映射,若x为正则空间,则厂:x-y是基一中紧映射;②若x和y都为基一可数中紧的,Y为局部紧的,则X×Y为基一可数中紧的.
引入瞭基一中緊映射,併證明瞭如下結果:①設,:x—l,是閉LindelSff映射,若x為正則空間,則廠:x-y是基一中緊映射;②若x和y都為基一可數中緊的,Y為跼部緊的,則X×Y為基一可數中緊的.
인입료기일중긴영사,병증명료여하결과:①설,:x—l,시폐LindelSff영사,약x위정칙공간,칙엄:x-y시기일중긴영사;②약x화y도위기일가수중긴적,Y위국부긴적,칙X×Y위기일가수중긴적.
The notion of base-mesocompact mapping is introduced and the following results are proved:(1)Let f:X--+Y be a closed Lindeloff mapping. If X is regular, then f:X→Y is base-countable mesocompact mapping; (2) Let X and Y be both base-mesocompact. X x Y is base-countable mesocompact if Y is locally compact.