中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2012年
13期
159-165
,共7页
钇钡铜氧涂层导体%冷绝缘高温超导电缆%均流%粒子群优化模型%数学模型
釔鋇銅氧塗層導體%冷絕緣高溫超導電纜%均流%粒子群優化模型%數學模型
을패동양도층도체%랭절연고온초도전람%균류%입자군우화모형%수학모형
YBCO%cold dielectric high temperature superconducting (CD HTS) cable%current sharing%particle swarm optimization algorithm (PSO) model%mathematical model
冷绝缘高温超导电缆的导电层一般设计为多层结构以满足大电流载流特性,但伴随层数的增加,超导体上的集肤效应会引起电缆输电导体各层电流分布不均匀的问题,从而造成电缆损耗增加和传输性能下降。采用基于动态惯性权重因子的粒子群优化算法,提出了电缆导体层电流层间均流优化的设计方法。应用第2代高温超导材料钇钡铜氧涂层导体,通过建立超导电缆的等效电路模型,考虑电场、磁场等约束因素,对一根1km长,110kV/3kA等级的冷绝缘高温超导电缆进行优化设计,获得了电缆本体结构参数及输电导体层和屏蔽层的电流分布。比较优化前后层电流的结果可知,优化后超导电缆各导体层电流与平均电流相比最大不平衡率小于3.5%,各屏蔽层电流达到均布,较好地实现了电缆各导体层电流均匀分布的优化目标。最后,超导模型样缆载流特性实验也验证了优化设计方法的有效性。
冷絕緣高溫超導電纜的導電層一般設計為多層結構以滿足大電流載流特性,但伴隨層數的增加,超導體上的集膚效應會引起電纜輸電導體各層電流分佈不均勻的問題,從而造成電纜損耗增加和傳輸性能下降。採用基于動態慣性權重因子的粒子群優化算法,提齣瞭電纜導體層電流層間均流優化的設計方法。應用第2代高溫超導材料釔鋇銅氧塗層導體,通過建立超導電纜的等效電路模型,攷慮電場、磁場等約束因素,對一根1km長,110kV/3kA等級的冷絕緣高溫超導電纜進行優化設計,穫得瞭電纜本體結構參數及輸電導體層和屏蔽層的電流分佈。比較優化前後層電流的結果可知,優化後超導電纜各導體層電流與平均電流相比最大不平衡率小于3.5%,各屏蔽層電流達到均佈,較好地實現瞭電纜各導體層電流均勻分佈的優化目標。最後,超導模型樣纜載流特性實驗也驗證瞭優化設計方法的有效性。
랭절연고온초도전람적도전층일반설계위다층결구이만족대전류재류특성,단반수층수적증가,초도체상적집부효응회인기전람수전도체각층전류분포불균균적문제,종이조성전람손모증가화전수성능하강。채용기우동태관성권중인자적입자군우화산법,제출료전람도체층전류층간균류우화적설계방법。응용제2대고온초도재료을패동양도층도체,통과건립초도전람적등효전로모형,고필전장、자장등약속인소,대일근1km장,110kV/3kA등급적랭절연고온초도전람진행우화설계,획득료전람본체결구삼수급수전도체층화병폐층적전류분포。비교우화전후층전류적결과가지,우화후초도전람각도체층전류여평균전류상비최대불평형솔소우3.5%,각병폐층전류체도균포,교호지실현료전람각도체층전류균균분포적우화목표。최후,초도모형양람재류특성실험야험증료우화설계방법적유효성。
Multi-layer structure in a cold dielectric (CD) high temperature superconducting (/-ITS) cable has a large current carrying capability. With the increase of the number of layers, the unevenly distributed currents caused by the skin effect in each conductor's layer will lead to the increment of the loss and a decline in transmission performance. An optimal design model for improving the current sharing among superconducting layers was proposed by using particle swarm optimization (PSO) algorithm with dynamically changing inertia weight (DCW) and was applied to design of a 1 kin, ll0kV/3 kA CD HTS AC power cable based on the second generation HTS YBCO tapes. Meanwhile, the configuration parameters and the currents of the conductor and the shield layers were calculated by using an equivalent circuit model of HTS cables and considering the constraint factors of the electric and magnetic field. Comparing the design results before and after optimization, we find that the maximum unbalanced rate of current in each layer is less than 3.5%, and there is a uniform current distribution among the conductor and shield layers. At last, the current test results of a demo HTS cable show the current sharing target is achieved very well, and this optimal design method is validated.