电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
4期
54-60
,共7页
唐昆明%唐辰旭%罗建%张太勤%黄翰
唐昆明%唐辰旭%囉建%張太勤%黃翰
당곤명%당신욱%라건%장태근%황한
配网电缆%单相接地故障%暂态信息%RLC模型%单端测距%参数辨识
配網電纜%單相接地故障%暫態信息%RLC模型%單耑測距%參數辨識
배망전람%단상접지고장%잠태신식%RLC모형%단단측거%삼수변식
distribution network cable%single-phase earth fault%transient information%RLC model%single fault location%parameter identification
提出了一种基于RLC模型的配网电缆单相接地故障的单端时域测距方法。该方法利用配网电缆单相接地故障后的暂态信息并结合故障状态网络与零模网络,建立时域测距方程,实现故障测距,且对过渡电阻及其两侧的等值对地电容进行了辨识求值。该算法避免了故障后消弧线圈补偿使得稳态残流微弱、过渡电阻、故障初始角及中性点运行方式等因素对测距精度的影响。大量的EMTP数字仿真结果验证了该算法的正确性,且具有较高的测距辨识精度。测距平均误差在10 m内,最大相对误差小于0.113%,计算过渡电阻的最大相对误差小于1.637%,满足实际工程应用需求。
提齣瞭一種基于RLC模型的配網電纜單相接地故障的單耑時域測距方法。該方法利用配網電纜單相接地故障後的暫態信息併結閤故障狀態網絡與零模網絡,建立時域測距方程,實現故障測距,且對過渡電阻及其兩側的等值對地電容進行瞭辨識求值。該算法避免瞭故障後消弧線圈補償使得穩態殘流微弱、過渡電阻、故障初始角及中性點運行方式等因素對測距精度的影響。大量的EMTP數字倣真結果驗證瞭該算法的正確性,且具有較高的測距辨識精度。測距平均誤差在10 m內,最大相對誤差小于0.113%,計算過渡電阻的最大相對誤差小于1.637%,滿足實際工程應用需求。
제출료일충기우RLC모형적배망전람단상접지고장적단단시역측거방법。해방법이용배망전람단상접지고장후적잠태신식병결합고장상태망락여령모망락,건립시역측거방정,실현고장측거,차대과도전조급기량측적등치대지전용진행료변식구치。해산법피면료고장후소호선권보상사득은태잔류미약、과도전조、고장초시각급중성점운행방식등인소대측거정도적영향。대량적EMTP수자방진결과험증료해산법적정학성,차구유교고적측거변식정도。측거평균오차재10 m내,최대상대오차소우0.113%,계산과도전조적최대상대오차소우1.637%,만족실제공정응용수구。
This paper presents a single-ended time domain fault location method for distribution network cable single-phase earth fault based on RLC model. The method uses the transient information at a distribution network cable single-phase ground fault to establish the time-domain ranging equation combining with fault state network and fault zero-mode network. The transition resistance and the equivalent capacitance to ground are identified and evaluated. The algorithm avoids the effect on the location accuracy by such factors as weak steady-state residual current caused by the fault arc suppression coil compensation, transition resistance, fault initial angle and the neutral point operation mode. EMTP digital simulation results verify the correctness of the algorithm, and show it has a high accuracy of identification and location. The ranging average error is within 10 m, the maximum relative error is less than 0.113%, and the maximum relative error of calculating the transition resistance is less than 1. 637%, which meets the needs of practical application.