现代计算机:上半月版
現代計算機:上半月版
현대계산궤:상반월판
Modern Computer
2012年
8期
3-7
,共5页
分形%Hurst指数%长相关性%自相似性%热点话题
分形%Hurst指數%長相關性%自相似性%熱點話題
분형%Hurst지수%장상관성%자상사성%열점화제
Fractal%Hurst Exponent%Long-Range Dependence%Self-Similarity%Hot Topic
面向大规模真实数据.应用聚合方差法、周期图和重标极差法对互联网信息发布数据进行研究.发现网民发布信息具有自相似和长相关特性。通过对各序列的Hurst指数估计,揭示了网络论坛日发帖量未来变化与历史的变化趋势一致:网民发帖量低发帖量网民与高发帖量网民的变化趋势一致:以及每日网民发帖量后发帖网民与先发帖网民的变化趋势一致等特性。这些性质对深入认识网络论坛规律、预测网络突发事件等具有一定参考价值。提出一种评价网络论坛舆论的定量指标。实验表明.该指标能有效发现网络突发事件。
麵嚮大規模真實數據.應用聚閤方差法、週期圖和重標極差法對互聯網信息髮佈數據進行研究.髮現網民髮佈信息具有自相似和長相關特性。通過對各序列的Hurst指數估計,揭示瞭網絡論罈日髮帖量未來變化與歷史的變化趨勢一緻:網民髮帖量低髮帖量網民與高髮帖量網民的變化趨勢一緻:以及每日網民髮帖量後髮帖網民與先髮帖網民的變化趨勢一緻等特性。這些性質對深入認識網絡論罈規律、預測網絡突髮事件等具有一定參攷價值。提齣一種評價網絡論罈輿論的定量指標。實驗錶明.該指標能有效髮現網絡突髮事件。
면향대규모진실수거.응용취합방차법、주기도화중표겁차법대호련망신식발포수거진행연구.발현망민발포신식구유자상사화장상관특성。통과대각서렬적Hurst지수고계,게시료망락론단일발첩량미래변화여역사적변화추세일치:망민발첩량저발첩량망민여고발첩량망민적변화추세일치:이급매일망민발첩량후발첩망민여선발첩망민적변화추세일치등특성。저사성질대심입인식망락론단규률、예측망락돌발사건등구유일정삼고개치。제출일충평개망락론단여론적정량지표。실험표명.해지표능유효발현망락돌발사건。
Studies the list of the daily amount of posters according to massive real data. Three methods are used here: the aggregated variance method, the periodogram method, and the R/S method. It is found that there are the long-range dependence processes and the self-similarity processes in the network forums. Gives the details of the estimation of the Hurst exponent. According to these experiments, presents some conclusions. First, the list of the daily amount of posters is the long-range dependence processes and the self-similarity processes. The daily amount in the fu- ture is changed as that in the past. Second, the list of the writer's amount of posters is the long-range dependence processes and the self-similarity processes. The amount of posters by the less poster writer is changed as that by the more poster writer. Finally, the amount of posters by the later writer is changed as that by the earlier writer in every day. These are valu- able for understanding the formation of the public opinion on Internet and forecasting the paroxysmal events. And presents a new prediction method based on the hurst exponent. The re- sult shows the exponent is the new proof to explain how the paroxysmal events happened.