山东科技大学学报:自然科学版
山東科技大學學報:自然科學版
산동과기대학학보:자연과학판
Journal of Shandong Univ of Sci and Technol: Nat Sci
2012年
2期
99-103
,共5页
贴壁细胞图像分割%Gabor滤波%带约束的区域生长%形态学闭运算
貼壁細胞圖像分割%Gabor濾波%帶約束的區域生長%形態學閉運算
첩벽세포도상분할%Gabor려파%대약속적구역생장%형태학폐운산
wall-stuck cell image segmentation%Gabor filtering%regional growth with restriction%morphologicallyclosed operation
贴壁细胞图像中细胞大小形状各不相同,细胞内部分区域与细胞边缘具有相近的灰度,部分细胞边缘较细或者断裂,为后续正确的分割计数带来了困难。传统的基于区域的图像分割很容易造成过分割和欠分割,前者得不到完整的细胞边缘,后者使细胞内部出现大量杂质点。为解决以上问题,首先利用Gabor滤波嚣的方向性滤波特性对细胞边缘进行增强,然后选择细胞边缘对应的离友度点作为种子点进行8连通约束的区域生长,最后对区域生长后的图像进行形态学闲运算消除小的空洞和毛刺,得到完整的细胞边缘圈像。与阈值法和边缘检测法的比较结果表明,该算法分割效果较好且对噪声幂敏感。
貼壁細胞圖像中細胞大小形狀各不相同,細胞內部分區域與細胞邊緣具有相近的灰度,部分細胞邊緣較細或者斷裂,為後續正確的分割計數帶來瞭睏難。傳統的基于區域的圖像分割很容易造成過分割和欠分割,前者得不到完整的細胞邊緣,後者使細胞內部齣現大量雜質點。為解決以上問題,首先利用Gabor濾波囂的方嚮性濾波特性對細胞邊緣進行增彊,然後選擇細胞邊緣對應的離友度點作為種子點進行8連通約束的區域生長,最後對區域生長後的圖像進行形態學閒運算消除小的空洞和毛刺,得到完整的細胞邊緣圈像。與閾值法和邊緣檢測法的比較結果錶明,該算法分割效果較好且對譟聲冪敏感。
첩벽세포도상중세포대소형상각불상동,세포내부분구역여세포변연구유상근적회도,부분세포변연교세혹자단렬,위후속정학적분할계수대래료곤난。전통적기우구역적도상분할흔용역조성과분할화흠분할,전자득불도완정적세포변연,후자사세포내부출현대량잡질점。위해결이상문제,수선이용Gabor려파효적방향성려파특성대세포변연진행증강,연후선택세포변연대응적리우도점작위충자점진행8련통약속적구역생장,최후대구역생장후적도상진행형태학한운산소제소적공동화모자,득도완정적세포변연권상。여역치법화변연검측법적비교결과표명,해산법분할효과교호차대조성멱민감。
The wall-stuck cells are different in sizes and shapes, the gray grade of cell inner regions is close to that of cell edges, the parts of the cell edges are thin and broken, leading to the difficulty for afterwards correctly segmenting and counting the number of cells. The traditional image segmentation based on regions was easy to be over segmented or inadequately segmented. The former cannot obtain the complete edge of cell and the latter obtains a number of ira-purity spots. In order to solve the above problem,first,Gabor filter was used to enhance the edges in different direc- tions;then, the high gray grade points corresponding to cell edges were used as seed points to carry out the regional growth with eight connective restrictions;finally,the morphologically closed operation was done for the image after the regional growth to eliminate small cavities and burrs and to get the image with complete cell edge. The results show that this algorithm is of good effect of segmentation and not sensitive to noise compared with threshold method and edge detection method.