生态环境学报
生態環境學報
생태배경학보
ECOLOGY AND ENVIRONMENT
2014年
2期
203-210
,共8页
张治%钟全林%程栋梁%徐朝斌%胡波%常云妮
張治%鐘全林%程棟樑%徐朝斌%鬍波%常雲妮
장치%종전림%정동량%서조빈%호파%상운니
碳储量%碳分配%林龄%常绿阔叶混交林%闽西北
碳儲量%碳分配%林齡%常綠闊葉混交林%閩西北
탄저량%탄분배%림령%상록활협혼교림%민서북
carbon storage%carbon distribution%forest age%ever-green broad-leaved mixed forest%north-west of Fujian province
选取福建西北部地区多群落类型组成的常绿阔叶混交林为研究对象,通过典型样地调查法,对生态系统各个层次进行取样调查,采用“相对生长法”计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-外加热容量法。在此基础上,分析了该地区不同林龄常绿阔叶林生态系统碳储量及其格局特征,结果表明,(1)闽西北地区常绿阔叶林生态系统平均碳储量为260.63 t·hm-2。在每个发育阶段,各层片对整个生态系统碳储量的贡献率相对稳定,空间分布格局特征相似。幼龄林、中龄林、近熟林、成过熟林生态系统的碳储量分别为192.14、221.15、317.11和312.12 t·hm-2,基本表现出随林龄增加而逐渐增大的趋势。(2)乔木层、灌木层、草本层、凋落物层的平均碳质量分数分别为48.5%、46.9%、41.2%、44.0%,每个层片中,各器官的碳含量差异不大,乔木层、灌木层及草本层的碳质量分数表现出随层片高度降低而减小的趋势。土壤碳质量分数由表层到底层逐渐减小。0~10、10~20 cm土层碳质量分数均显著大于其余三个土层。(3)生物量碳储量在每个层片随着龄组不同,表现出不同的变化趋势。乔木层碳储量大小排序为近熟林﹥成过熟林﹥中龄林﹥幼龄林,灌木层与草本层在不同发育阶段的碳储量,均表现出以下规律:从幼龄林到中龄林不断增长,在中龄林达到最大值后,又随发育的进行显现出不断下降的趋势。随着地表凋落物现存量的不断增加,其碳储量也表现出幼龄林﹥中龄林﹥近熟林﹥成过熟林的趋势。土壤的平均碳储量为134.986 t·hm-2,随着林分发育,表现为成过熟林﹥近熟林﹥中龄林﹥幼龄林。
選取福建西北部地區多群落類型組成的常綠闊葉混交林為研究對象,通過典型樣地調查法,對生態繫統各箇層次進行取樣調查,採用“相對生長法”計算喬木層生物量,灌木層、草本層和凋落物層採用全部收穫法測得其生物量,對土壤層的調查採用剖麵法加土鑽法,代錶性樣品碳含量的測定採用重鉻痠鉀-外加熱容量法。在此基礎上,分析瞭該地區不同林齡常綠闊葉林生態繫統碳儲量及其格跼特徵,結果錶明,(1)閩西北地區常綠闊葉林生態繫統平均碳儲量為260.63 t·hm-2。在每箇髮育階段,各層片對整箇生態繫統碳儲量的貢獻率相對穩定,空間分佈格跼特徵相似。幼齡林、中齡林、近熟林、成過熟林生態繫統的碳儲量分彆為192.14、221.15、317.11和312.12 t·hm-2,基本錶現齣隨林齡增加而逐漸增大的趨勢。(2)喬木層、灌木層、草本層、凋落物層的平均碳質量分數分彆為48.5%、46.9%、41.2%、44.0%,每箇層片中,各器官的碳含量差異不大,喬木層、灌木層及草本層的碳質量分數錶現齣隨層片高度降低而減小的趨勢。土壤碳質量分數由錶層到底層逐漸減小。0~10、10~20 cm土層碳質量分數均顯著大于其餘三箇土層。(3)生物量碳儲量在每箇層片隨著齡組不同,錶現齣不同的變化趨勢。喬木層碳儲量大小排序為近熟林﹥成過熟林﹥中齡林﹥幼齡林,灌木層與草本層在不同髮育階段的碳儲量,均錶現齣以下規律:從幼齡林到中齡林不斷增長,在中齡林達到最大值後,又隨髮育的進行顯現齣不斷下降的趨勢。隨著地錶凋落物現存量的不斷增加,其碳儲量也錶現齣幼齡林﹥中齡林﹥近熟林﹥成過熟林的趨勢。土壤的平均碳儲量為134.986 t·hm-2,隨著林分髮育,錶現為成過熟林﹥近熟林﹥中齡林﹥幼齡林。
선취복건서북부지구다군락류형조성적상록활협혼교림위연구대상,통과전형양지조사법,대생태계통각개층차진행취양조사,채용“상대생장법”계산교목층생물량,관목층、초본층화조락물층채용전부수획법측득기생물량,대토양층적조사채용부면법가토찬법,대표성양품탄함량적측정채용중락산갑-외가열용량법。재차기출상,분석료해지구불동림령상록활협림생태계통탄저량급기격국특정,결과표명,(1)민서북지구상록활협림생태계통평균탄저량위260.63 t·hm-2。재매개발육계단,각층편대정개생태계통탄저량적공헌솔상대은정,공간분포격국특정상사。유령림、중령림、근숙림、성과숙림생태계통적탄저량분별위192.14、221.15、317.11화312.12 t·hm-2,기본표현출수림령증가이축점증대적추세。(2)교목층、관목층、초본층、조락물층적평균탄질량분수분별위48.5%、46.9%、41.2%、44.0%,매개층편중,각기관적탄함량차이불대,교목층、관목층급초본층적탄질량분수표현출수층편고도강저이감소적추세。토양탄질량분수유표층도저층축점감소。0~10、10~20 cm토층탄질량분수균현저대우기여삼개토층。(3)생물량탄저량재매개층편수착령조불동,표현출불동적변화추세。교목층탄저량대소배서위근숙림﹥성과숙림﹥중령림﹥유령림,관목층여초본층재불동발육계단적탄저량,균표현출이하규률:종유령림도중령림불단증장,재중령림체도최대치후,우수발육적진행현현출불단하강적추세。수착지표조락물현존량적불단증가,기탄저량야표현출유령림﹥중령림﹥근숙림﹥성과숙림적추세。토양적평균탄저량위134.986 t·hm-2,수착림분발육,표현위성과숙림﹥근숙림﹥중령림﹥유령림。
To evaluate the Carbon Storage of the ever-green broad-leaved forests in Fujian Province, ten 1 000 m2 plots belonging to different successional stages were selected and plant biomass and soil carbon content were measured. The biomass of arborous layer was calculated by using relative growth method, while the biomass of shrub, herb and litter layers were calculated by using the full harvest method. The cross-section method and soil drilling methods were used to determine the soil carbon content. The results indicated that the average carbon storage of the ever-green broad-leaved forest was 260.63 t·hm-2. The total carbon storage were 192.14, 221.15, 317.11 and 312.12 t·hm-2 for young forest, half-mature forest, near-mature forest and over mature forest, respectively, indicating the carbon storage gradually increases with succession. The contribution of the carbon content of different layers to entire ecosystem were relatively stable and did not vary in different successional stages. The means of carbon concentration for different layers did not differ significantly, and were 48.5%, 46.9%, 41.2%and 44.0%for arborous, shrub, herb and litter layers, respectively. The carbon content were decreased from arborous to herb layers. The carbon concentrations for 0-10 cm and 10-20 cm soil layers were significantly greater than deeper soil layers. The carbon storage of different layers varied with successional stages. The carbon storage of arborous layer followed the order: near-mature forest > overmature forest>half-mature forest>young forest. The carbon storage of shrub and herb layers increased with development and reached the maximum values in the half-mature stages. After that, the carbon storage of shrub and herb layers gradually decreased. With the increasing of litter content, the total carbon storage increased with the successional stages, young forest>half-mature forest>near-mature forest>overmature forest. The soil average carbon storage is 134.986 t·hm-2. Similarly, carbon storage of soil increased with forest succession, showing that overmature forest>near-mature forest>half-mature forest>young forest.