华南理工大学学报(自然科学版)
華南理工大學學報(自然科學版)
화남리공대학학보(자연과학판)
JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
2期
116-124
,共9页
王勇%毛海军%刘永%何杰
王勇%毛海軍%劉永%何傑
왕용%모해군%류영%하걸
车辆路线优化%客户点特性%模糊聚类算法%梯形模糊数
車輛路線優化%客戶點特性%模糊聚類算法%梯形模糊數
차량로선우화%객호점특성%모호취류산법%제형모호수
vehicle routing optimization%customer characteristic%fuzzy clustering algorithm%trapezoidal fuzzy number
针对传统车辆路线优化研究在对客户点商品需求特性方面存在的不足,提出了先基于客户点多重特性进行聚类分析后进行线路优化的思想。首先,将语言变量值用梯形模糊数表示,对客户点和二级准则指标进行综合评价;其次,采用模糊集成方法将二级准则指标集成到一级准则指标上,将集成后的一级指标属性值拆分为4个分属性值参与聚类算法计算,并通过设计的聚类有效性指标选取合理的聚类结果;然后,应用模糊TOPSIS方法计算各类内的客户点优先级权重;最后,构建了客户点被选择服务的评价函数式,并与动态规划方法结合进行线路优化。文中还通过实例对所提方法的有效性进行了验证,并与现有方法进行了对比。结果表明,文中方法优于单纯以距离和客户点优先级权重为测度单位的方法,线路优化结果合理,并能应用到存在大规模客户点的车辆路线优化问题中。
針對傳統車輛路線優化研究在對客戶點商品需求特性方麵存在的不足,提齣瞭先基于客戶點多重特性進行聚類分析後進行線路優化的思想。首先,將語言變量值用梯形模糊數錶示,對客戶點和二級準則指標進行綜閤評價;其次,採用模糊集成方法將二級準則指標集成到一級準則指標上,將集成後的一級指標屬性值拆分為4箇分屬性值參與聚類算法計算,併通過設計的聚類有效性指標選取閤理的聚類結果;然後,應用模糊TOPSIS方法計算各類內的客戶點優先級權重;最後,構建瞭客戶點被選擇服務的評價函數式,併與動態規劃方法結閤進行線路優化。文中還通過實例對所提方法的有效性進行瞭驗證,併與現有方法進行瞭對比。結果錶明,文中方法優于單純以距離和客戶點優先級權重為測度單位的方法,線路優化結果閤理,併能應用到存在大規模客戶點的車輛路線優化問題中。
침대전통차량로선우화연구재대객호점상품수구특성방면존재적불족,제출료선기우객호점다중특성진행취류분석후진행선로우화적사상。수선,장어언변량치용제형모호수표시,대객호점화이급준칙지표진행종합평개;기차,채용모호집성방법장이급준칙지표집성도일급준칙지표상,장집성후적일급지표속성치탁분위4개분속성치삼여취류산법계산,병통과설계적취류유효성지표선취합리적취류결과;연후,응용모호TOPSIS방법계산각류내적객호점우선급권중;최후,구건료객호점피선택복무적평개함수식,병여동태규화방법결합진행선로우화。문중환통과실례대소제방법적유효성진행료험증,병여현유방법진행료대비。결과표명,문중방법우우단순이거리화객호점우선급권중위측도단위적방법,선로우화결과합리,병능응용도존재대규모객호점적차량로선우화문제중。
In order to overcome the shortcomings of the traditional vehicle routing optimization study in terms of customers' commodity demand characteristics,a clustering analysis-based routing optimization using multiple cus-tomer characteristics is proposed.In the investigation,first,linguistic variables are represented by trapezoidal fuzzy number to implement a comprehensive evaluation of both customers and sub-criterion indices.Next,the sub-criteri-on indices are integrated into a major criterion index via fuzzy integration,and the integrated major criterion value is split into four sub-criterion values for clustering operation,with a clustering validity index being designed to choose reasonable clustering results.Then,the fuzzy TOPSIS method is used to calculate the customer priority weights for each cluster.Moreover,evaluation functions for selected customer services are established and are combined with the dynamic programming method for vehicle routing optimization.Finally,the effectiveness of the proposed method is verified through an example,and is compared with the existing methods.The results show that the proposed method is superior to the method only based on distance measure or customer priority weights,and that it helps to obtain reasonable vehicle routing even in the presence of large-scale customers.