有色金属科学与工程
有色金屬科學與工程
유색금속과학여공정
JIANGXI NONFERROUS METALS
2013年
6期
73-77
,共5页
刘建伟%吴贤振%刘祥鑫%喻圆圆%胡维%尹丽冰
劉建偉%吳賢振%劉祥鑫%喻圓圓%鬍維%尹麗冰
류건위%오현진%류상흠%유원원%호유%윤려빙
岩石力学%声发射%Welch谱%EMD能量熵%BP神经网络%信号识别
巖石力學%聲髮射%Welch譜%EMD能量熵%BP神經網絡%信號識彆
암석역학%성발사%Welch보%EMD능량적%BP신경망락%신호식별
rock mechanics%acoustic emission(AE)%Welch spectrum%EMD energy entropy%BP neural network%recognition
针对不同岩石脆性破裂声发射信号的非稳定性等特点,提出了声发射参数、Welch谱、EMD和BP 神经网络相结合的声发射信号特征提取及识别方法。通过对3类脆性岩石进行单轴压缩声发射试验,获取了岩石破裂全过程的力学、声发射参数及波形;对各类岩石的声发射信号的时频特征进行了对比分析;综合声发射参数、峰值频率及EMD能量熵等特征向量,运用BP神经网络对岩石声发射及干扰源信号进行模式识别。结果表明,不同岩石在单轴加载下声发射参数随应力或时间的演化特征存在异同;EMD与Welch谱可很好体现出不同岩石声发射信号频谱与能量分布的特征差异;不同岩石声发射多种特征的神经网络具有良好的识别效果。
針對不同巖石脆性破裂聲髮射信號的非穩定性等特點,提齣瞭聲髮射參數、Welch譜、EMD和BP 神經網絡相結閤的聲髮射信號特徵提取及識彆方法。通過對3類脆性巖石進行單軸壓縮聲髮射試驗,穫取瞭巖石破裂全過程的力學、聲髮射參數及波形;對各類巖石的聲髮射信號的時頻特徵進行瞭對比分析;綜閤聲髮射參數、峰值頻率及EMD能量熵等特徵嚮量,運用BP神經網絡對巖石聲髮射及榦擾源信號進行模式識彆。結果錶明,不同巖石在單軸加載下聲髮射參數隨應力或時間的縯化特徵存在異同;EMD與Welch譜可很好體現齣不同巖石聲髮射信號頻譜與能量分佈的特徵差異;不同巖石聲髮射多種特徵的神經網絡具有良好的識彆效果。
침대불동암석취성파렬성발사신호적비은정성등특점,제출료성발사삼수、Welch보、EMD화BP 신경망락상결합적성발사신호특정제취급식별방법。통과대3류취성암석진행단축압축성발사시험,획취료암석파렬전과정적역학、성발사삼수급파형;대각류암석적성발사신호적시빈특정진행료대비분석;종합성발사삼수、봉치빈솔급EMD능량적등특정향량,운용BP신경망락대암석성발사급간우원신호진행모식식별。결과표명,불동암석재단축가재하성발사삼수수응력혹시간적연화특정존재이동;EMD여Welch보가흔호체현출불동암석성발사신호빈보여능량분포적특정차이;불동암석성발사다충특정적신경망락구유량호적식별효과。
Considering the instability of acoustic emission (AE) signals of different rock fracture, the method for feature extraction and comprehensive recognition of AE is put forward combining with AE parameters, Welch spectrum, EMD and BP neural network. Through the acoustic emission experiment of three different brittle rocks under uniaxial compression, stress-strain curve and AE data are obtained. Comparative analysis is carried out towards the time-frequency characteristics of AE signal of rock samples. Feature vectors, such as AE parameters, Welch spectrum, and EMD energy entropy, are integrated with BP neural network to recognize different AE signal patterns. The results show that there are similarities and differences in characteristic evolving with stress or time of AE parameters of different rocks under uniaxial compression; characteristic differences of AE spectrum and energy distribution of different rocks can be well reflected from EMD and Welch spectrum; a high recognition rate can be reached by neural network with various characteristics of different rock acoustic emission.