有色金属科学与工程
有色金屬科學與工程
유색금속과학여공정
JIANGXI NONFERROUS METALS
2013年
6期
24-27,32
,共5页
单晶铜%再结晶%形核%组织演变%亚结构
單晶銅%再結晶%形覈%組織縯變%亞結構
단정동%재결정%형핵%조직연변%아결구
single crystal copper%recrystallization%nucleate%microstructure evolution%sub-structure
经强冷变形后的单晶铜线会产生明显的亚结构,在退火过程中该亚结构将发生转变.以中拉单晶铜线为对象,通过金相、力学性能测试法、电阻测试等手段研究了经强冷变形后的单晶铜线在不同退火工艺制度下的组织性能变化和再结晶过程.研究结果表明:加工态单晶铜线材的再结晶温度开始在250℃左右,比相同冷变形率下的SCR连铸纯铜杆的再结晶温度高约50℃.强冷变形单晶铜线再结晶形核的孕育期随温度升高而缩短,500°C时的孕育期不足2 min.单晶铜在退火的回复阶段导电性能得到改善,但温度较高发生再结晶时,由于晶界数量的不断增加,有抑制电阻率减小的作用.强冷变形后的单晶铜线要想恢复足够的塑性,则难以避免成为多晶,如果既要恢复单晶铜线的塑性和导电性,又要维持单晶的组织形态,进行高温超短时间退火将有助于解决这一问题.
經彊冷變形後的單晶銅線會產生明顯的亞結構,在退火過程中該亞結構將髮生轉變.以中拉單晶銅線為對象,通過金相、力學性能測試法、電阻測試等手段研究瞭經彊冷變形後的單晶銅線在不同退火工藝製度下的組織性能變化和再結晶過程.研究結果錶明:加工態單晶銅線材的再結晶溫度開始在250℃左右,比相同冷變形率下的SCR連鑄純銅桿的再結晶溫度高約50℃.彊冷變形單晶銅線再結晶形覈的孕育期隨溫度升高而縮短,500°C時的孕育期不足2 min.單晶銅在退火的迴複階段導電性能得到改善,但溫度較高髮生再結晶時,由于晶界數量的不斷增加,有抑製電阻率減小的作用.彊冷變形後的單晶銅線要想恢複足夠的塑性,則難以避免成為多晶,如果既要恢複單晶銅線的塑性和導電性,又要維持單晶的組織形態,進行高溫超短時間退火將有助于解決這一問題.
경강랭변형후적단정동선회산생명현적아결구,재퇴화과정중해아결구장발생전변.이중랍단정동선위대상,통과금상、역학성능측시법、전조측시등수단연구료경강랭변형후적단정동선재불동퇴화공예제도하적조직성능변화화재결정과정.연구결과표명:가공태단정동선재적재결정온도개시재250℃좌우,비상동랭변형솔하적SCR련주순동간적재결정온도고약50℃.강랭변형단정동선재결정형핵적잉육기수온도승고이축단,500°C시적잉육기불족2 min.단정동재퇴화적회복계단도전성능득도개선,단온도교고발생재결정시,유우정계수량적불단증가,유억제전조솔감소적작용.강랭변형후적단정동선요상회복족구적소성,칙난이피면성위다정,여과기요회복단정동선적소성화도전성,우요유지단정적조직형태,진행고온초단시간퇴화장유조우해결저일문제.
The single crystal copper after strong cooling deformation can produce obvious sub-structure, which will transform in the annealing process. The research investigates microstructure evolution of the strong cooling deformed single crystal copper in different annealing process systems and its recrystallization process by means of metallographic, mechanical properties test and resistance test. The results show that: the recrystallization temperature of single crystal copper wire begins at 250 ℃,which is 50 ℃ higher than that of the SCR continuous casting copper rod. The recrystallization incubation period of single crystal copper decreases with the increase of temperature, and the incubation period is less than 2 min at 500 ℃. Single crystal copper conductive performance improves in the recovery phase, but recrystallization caused by higher temperature will slow the resistivity decreasing trend due to the increasing number of grain boundaries. It is unavoidable for the strong cooling deformed single crystal copper to become polycrystalline, if it tends to regain sufficient plasticity. High temperature and ultra-short time annealing will help to restore the plasticity and electrical conductivity of single crystal copper, and maintain its morphology as well.