乳业科学与技术
乳業科學與技術
유업과학여기술
JOURNAL OF DAIRY SCIENCE AND TECHNOLOGY
2012年
2期
34-37
,共4页
穆海波%殷秀秀%艾连中%顾小红
穆海波%慇秀秀%艾連中%顧小紅
목해파%은수수%애련중%고소홍
傅里叶变换红外光谱法%软独立模式分类法%牛奶%模式识别
傅裏葉變換紅外光譜法%軟獨立模式分類法%牛奶%模式識彆
부리협변환홍외광보법%연독립모식분류법%우내%모식식별
FTIR%SIMCA%milk%pattern recognition
利用傅里叶变换红外光谱法(FTIR)结合软独立模式分类法(SIMCA)对不同类别的牛奶进行识别。通过对光谱数据基线校正和Savitzky-Golay平滑处理后,在3100~850cm-1光谱区域,利用留一交互验证法建立获得主成分分析(PCA)最优模型。在α=5%显著水平下,最优模型对纯牛奶、低乳糖奶、低脂奶和高蛋白奶的识别率分别为80%、80%、100%和80%,拒绝率分别为93%、100%、100%和93%。表明FTIR结合SIMCA可成为快速识别牛奶类别的有效方法。
利用傅裏葉變換紅外光譜法(FTIR)結閤軟獨立模式分類法(SIMCA)對不同類彆的牛奶進行識彆。通過對光譜數據基線校正和Savitzky-Golay平滑處理後,在3100~850cm-1光譜區域,利用留一交互驗證法建立穫得主成分分析(PCA)最優模型。在α=5%顯著水平下,最優模型對純牛奶、低乳糖奶、低脂奶和高蛋白奶的識彆率分彆為80%、80%、100%和80%,拒絕率分彆為93%、100%、100%和93%。錶明FTIR結閤SIMCA可成為快速識彆牛奶類彆的有效方法。
이용부리협변환홍외광보법(FTIR)결합연독립모식분류법(SIMCA)대불동유별적우내진행식별。통과대광보수거기선교정화Savitzky-Golay평활처리후,재3100~850cm-1광보구역,이용류일교호험증법건립획득주성분분석(PCA)최우모형。재α=5%현저수평하,최우모형대순우내、저유당내、저지내화고단백내적식별솔분별위80%、80%、100%화80%,거절솔분별위93%、100%、100%화93%。표명FTIR결합SIMCA가성위쾌속식별우내유별적유효방법。
Fourier transform infrared spectroscopy(FTIR) combined with soft independent modeling of class analogy(SIMCA) method was employed to the identification of different varieties of milk.The optimized PCA model was built by leave-one-out cross-validation(LOOCV) method after series of pre-treatments such as baseline correction and Savitzky-Golay smoothing in the region of 3100 — 850 cm-1.Under the α =5% significance level,the identification rates of this model for pure milk,low lactose milk,low fat milk and high protein milk were 80%,80%,100% and 80%,respectively,and the rejection rates were 93%,100%,100% and 93%,respectively.This indicates that FTIR combined with SIMCA is a valid method for rapid identification of different varieties of milk.