伊犁师范学院学报:自然科学版
伊犛師範學院學報:自然科學版
이리사범학원학보:자연과학판
Journal of Yili Normal University
2012年
3期
21-25
,共5页
上下解%格林函数%Leray-Schauder不动点定理%边值问题
上下解%格林函數%Leray-Schauder不動點定理%邊值問題
상하해%격림함수%Leray-Schauder불동점정리%변치문제
lower and upper solutions%fractional green's function%leray-schauder fixed point theorem%boundary value problems
利用上下解的方法,通过Leray—Schauder不动点定理,给出非线性分数阶微分方程边值问题 正解存在的唯一性,其中3〈a≤4为实数,f:[0,1]×[0,+∞)→[0,∞)是连续的,Da0+是一个标准的RAeman—Liouvile微分.
利用上下解的方法,通過Leray—Schauder不動點定理,給齣非線性分數階微分方程邊值問題 正解存在的唯一性,其中3〈a≤4為實數,f:[0,1]×[0,+∞)→[0,∞)是連續的,Da0+是一箇標準的RAeman—Liouvile微分.
이용상하해적방법,통과Leray—Schauder불동점정리,급출비선성분수계미분방정변치문제 정해존재적유일성,기중3〈a≤4위실수,f:[0,1]×[0,+∞)→[0,∞)시련속적,Da0+시일개표준적RAeman—Liouvile미분.
In this paper, we deal with the following nonlinear fractional boundary value problem Where Da0+ is the standard Rieman-Liouvile fractional derivative and 3〈a〈4 is a real number,f:[0,1]×[0,+∞)→[0,∞) is continuous. The proof relies on lower and upper solution method and Leray-Schauder fixed-point theorems.