五邑大学学报:自然科学版
五邑大學學報:自然科學版
오읍대학학보:자연과학판
Journal of Wuyi University(Natural Science Edition)
2012年
3期
6-11
,共6页
广义DeBruijn图%边割%限制边连通度
廣義DeBruijn圖%邊割%限製邊連通度
엄의DeBruijn도%변할%한제변련통도
generalized De Bruijn graphs%edge cut%restricted edge connectivity
m-限制边割将连通图G分离成阶不小于m的连通分支,图G的最小m-限制边割所含的边数称为图G的m-限制边通度,记作λm(G).对于包含m-限制边割的连通图G,有λm(G)≤ξm(G)(m≤3);如果λm(G)=ξm(G),则称图G是极大m-限制边连通的.本文证明:当n≥7时,无向广义De Bruijn图UBG(2,n)是极大m-限制边连通的(m={2,3}).
m-限製邊割將連通圖G分離成階不小于m的連通分支,圖G的最小m-限製邊割所含的邊數稱為圖G的m-限製邊通度,記作λm(G).對于包含m-限製邊割的連通圖G,有λm(G)≤ξm(G)(m≤3);如果λm(G)=ξm(G),則稱圖G是極大m-限製邊連通的.本文證明:噹n≥7時,無嚮廣義De Bruijn圖UBG(2,n)是極大m-限製邊連通的(m={2,3}).
m-한제변할장련통도G분리성계불소우m적련통분지,도G적최소m-한제변할소함적변수칭위도G적m-한제변통도,기작λm(G).대우포함m-한제변할적련통도G,유λm(G)≤ξm(G)(m≤3);여과λm(G)=ξm(G),칙칭도G시겁대m-한제변련통적.본문증명:당n≥7시,무향엄의De Bruijn도UBG(2,n)시겁대m-한제변련통적(m={2,3}).
An m-restricted edge cut is an edge cut of a connected graph that disconnects this graph into each components having order at least m.The minimum size m-restricted edge cut of graph G is m-restricted edge connectivity,denoted by λm(G).It is known that λm(G) ≤ ξm(G) holds for graph G that contain m-restricted edge cut whenever m ≤ 3.Graph G is maximally m- restricted edge connected if λm(G)=ξ m(G).In this paper,for some m = { 2,3},undirected generalized De Bruijn graphs UBG(2,n) are proved to be maximally m-restricted edge connected whenever n ≥ 7.