淮北师范大学学报:自然科学版
淮北師範大學學報:自然科學版
회북사범대학학보:자연과학판
Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
2012年
3期
24-26
,共3页
泛圈图%谱半径%闭包%Hamilton圈
汎圈圖%譜半徑%閉包%Hamilton圈
범권도%보반경%폐포%Hamilton권
pancyclic graph%spectral radius%closure%Hamilton cycle
从图G的补图谱半径角度研究图的泛圈性.利用图的补图谱半径的界,讨论泛圈图存在的谱条件,证明了n阶图G,如果μ(G)≤(n-3)(1/2),则图G是泛圈图.
從圖G的補圖譜半徑角度研究圖的汎圈性.利用圖的補圖譜半徑的界,討論汎圈圖存在的譜條件,證明瞭n階圖G,如果μ(G)≤(n-3)(1/2),則圖G是汎圈圖.
종도G적보도보반경각도연구도적범권성.이용도적보도보반경적계,토론범권도존재적보조건,증명료n계도G,여과μ(G)≤(n-3)(1/2),칙도G시범권도.
In this paper, some spectral conditions we studied pancyclic of a graph from the spectral radius of a graph G. for the existence of pancyclic graph by using bounds on spectral We discussed radius of the complement of a graph, and show that if G was a graph of order n withμ(G)≤(n-3)(1/2), then G was a pancyclic graph.