四川文理学院学报
四川文理學院學報
사천문이학원학보
SICHUAN UNIVERSITY OF ARTS AND SCIENCE JOURNAL
2012年
5期
21-24
,共4页
谢凤艳%姜利敏%董永刚
謝鳳豔%薑利敏%董永剛
사봉염%강리민%동영강
Rayleigh—B6nard对流模型%Boussinesq近似系统:误差方程组%.
Rayleigh—B6nard對流模型%Boussinesq近似繫統:誤差方程組%.
Rayleigh—B6nard대류모형%Boussinesq근사계통:오차방정조%.
Rayleigh - Benard convection model%Boussinesq approximating system%en'or equations.
为揭示Rayleigh—Benard对流模型的特征,运用奇异摄动理论的小参数渐近展开法,研究了在给定的初值条件,初始层消失时,Rayleigh—Benard对流的Boussinesq近似系统解的无穷大Prandtl数渐近极限问题.给出了该问题的近似解和误差方程组.
為揭示Rayleigh—Benard對流模型的特徵,運用奇異攝動理論的小參數漸近展開法,研究瞭在給定的初值條件,初始層消失時,Rayleigh—Benard對流的Boussinesq近似繫統解的無窮大Prandtl數漸近極限問題.給齣瞭該問題的近似解和誤差方程組.
위게시Rayleigh—Benard대류모형적특정,운용기이섭동이론적소삼수점근전개법,연구료재급정적초치조건,초시층소실시,Rayleigh—Benard대류적Boussinesq근사계통해적무궁대Prandtl수점근겁한문제.급출료해문제적근사해화오차방정조.
To reveal the Characteristic of tlayleigh- Benard eonveetion model, based on the small parameter asymptotie expan- zion method of singular perturbation theory,this paper is concerned with the infinite Prandtl number limit of the solution to Flay- leigh - Benard convection in case of specially - prepared initial data, which ean make the initial layer disappeared. A asymptotic solution and error equations are also obtained in this paper.