电子科技
電子科技
전자과기
IT AGE
2012年
9期
16-18,27
,共4页
黄华盛%刘富昌%钟晓乐%邓继忠%黎伟烧
黃華盛%劉富昌%鐘曉樂%鄧繼忠%黎偉燒
황화성%류부창%종효악%산계충%려위소
植物病害诊断%田间调查%图像识别%智能手机
植物病害診斷%田間調查%圖像識彆%智能手機
식물병해진단%전간조사%도상식별%지능수궤
plant disease diagnosis%field investigation%image recognition%smart phone
植物叶片病斑面积估算是进行植物病害田间调查的一种常用方法,但常规的人工估算等方法依赖人眼判读,因此存在植物病害程度分级不精确、调查人员工作量大以及不同人员判定尺度不一等问题。文中采用数字图像识别技术计算叶片病斑面积,以期提高其计算精度及植病程度估计的准确性。以基于Windows Mobile系统的智能手机作为开发平台,采用c#编程,开发了一个田间植物病害图像分析仪,该仪器利用手机的拍照功能完成了田间植物叶片的图像采集,并能对病斑面积以百分比进行分析,进而得出植病的严重度。模拟试验表明,该仪器操作简便、分析准确。通过软件开发,还能进一步拓展其分析功能。
植物葉片病斑麵積估算是進行植物病害田間調查的一種常用方法,但常規的人工估算等方法依賴人眼判讀,因此存在植物病害程度分級不精確、調查人員工作量大以及不同人員判定呎度不一等問題。文中採用數字圖像識彆技術計算葉片病斑麵積,以期提高其計算精度及植病程度估計的準確性。以基于Windows Mobile繫統的智能手機作為開髮平檯,採用c#編程,開髮瞭一箇田間植物病害圖像分析儀,該儀器利用手機的拍照功能完成瞭田間植物葉片的圖像採集,併能對病斑麵積以百分比進行分析,進而得齣植病的嚴重度。模擬試驗錶明,該儀器操作簡便、分析準確。通過軟件開髮,還能進一步拓展其分析功能。
식물협편병반면적고산시진행식물병해전간조사적일충상용방법,단상규적인공고산등방법의뢰인안판독,인차존재식물병해정도분급불정학、조사인원공작량대이급불동인원판정척도불일등문제。문중채용수자도상식별기술계산협편병반면적,이기제고기계산정도급식병정도고계적준학성。이기우Windows Mobile계통적지능수궤작위개발평태,채용c#편정,개발료일개전간식물병해도상분석의,해의기이용수궤적박조공능완성료전간식물협편적도상채집,병능대병반면적이백분비진행분석,진이득출식병적엄중도。모의시험표명,해의기조작간편、분석준학。통과연건개발,환능진일보탁전기분석공능。
Lesion area estimation of plant leaf is a common method of investigating filed plant diseases. However, the conventional artificial estimation method, which depends on human eye identification, has a series of questions such as inaccuracy of plant disease rating, heavy workload of investigator, variation of scale from one investigator to another and so on. It will improve the accuracy of computation and plant disease rating to apply digital image recognition technology in calculating leaf lesion area. With the smart phone based on Windows Mobile system as development plat- form, this paper develops an image analyzer for field plant disease by employing C# programming technology. The ana- lyzer collects leaf image of field plant by the photo function of smart phone. It can also analyze the percentage of lesion area to obtain the severity of plant diseases. The simulation test shows that this analyzer operates siThe lesion area esti- mation of plant leaf is a common method of investigating filed plant diseases. However, the conventional artificial esti- mation method, which depends on human eye identification, has a series of questions such as inaccuracy of plant dis- ease rating, heavy workload of investigator, and variation of scale from one investigator to another. It will improve the accuracy of computation and plant disease rating to apply the digital image recognition technology in calculating the leaf lesion area. With the smart phone based on the Windows Mobile system as the development platform, this paper devel- ops an image analyzer for field plant disease by employing the C# programming technology. The analyzer collects leaf images of field plants by the photo function of smart phones. It can also analyze the percentage of lesion area to obtain the severity of plant diseases. The simulation test shows that this analyzer has the advantages of easy operation and accurate analysis. Furthermore, the analysis functions can be expanded by software development.