软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2013年
11期
2687-2698
,共12页
布谷鸟搜索算法%逐维改进%函数优化%多维函数%干扰现象
佈穀鳥搜索算法%逐維改進%函數優化%多維函數%榦擾現象
포곡조수색산법%축유개진%함수우화%다유함수%간우현상
cuckoo search algorithm%dimension by dimension improvement%function optimization%multi-dimension function%interference phenomena
布谷鸟搜索(cuckoo search,简称 CS)算法是一种新兴的仿生智能算法,对解采用整体更新评价策略。在求解多维函数优化问题时,由于各维之间相互干扰,采用整体更新评价策略将恶化算法的收敛速度和解的质量。为了弥补此缺陷,提出了基于逐维改进的布谷鸟搜索算法。在改进算法的迭代过程中,针对解采用逐维更新评价策略。该策略将各维的更新值与其他维的值组合成新的解,并采用贪婪方式接受能够改善解质量的更新值。实验结果说明,改进策略能够有效地提高CS算法的收敛速度并改善解的质量。与相关的改进布谷鸟搜索算法以及其他演化算法的比较结果表明,改进算法在求解连续函数优化问题上是具有竞争力的。
佈穀鳥搜索(cuckoo search,簡稱 CS)算法是一種新興的倣生智能算法,對解採用整體更新評價策略。在求解多維函數優化問題時,由于各維之間相互榦擾,採用整體更新評價策略將噁化算法的收斂速度和解的質量。為瞭瀰補此缺陷,提齣瞭基于逐維改進的佈穀鳥搜索算法。在改進算法的迭代過程中,針對解採用逐維更新評價策略。該策略將各維的更新值與其他維的值組閤成新的解,併採用貪婪方式接受能夠改善解質量的更新值。實驗結果說明,改進策略能夠有效地提高CS算法的收斂速度併改善解的質量。與相關的改進佈穀鳥搜索算法以及其他縯化算法的比較結果錶明,改進算法在求解連續函數優化問題上是具有競爭力的。
포곡조수색(cuckoo search,간칭 CS)산법시일충신흥적방생지능산법,대해채용정체경신평개책략。재구해다유함수우화문제시,유우각유지간상호간우,채용정체경신평개책략장악화산법적수렴속도화해적질량。위료미보차결함,제출료기우축유개진적포곡조수색산법。재개진산법적질대과정중,침대해채용축유경신평개책략。해책략장각유적경신치여기타유적치조합성신적해,병채용탐람방식접수능구개선해질량적경신치。실험결과설명,개진책략능구유효지제고CS산법적수렴속도병개선해적질량。여상관적개진포곡조수색산법이급기타연화산법적비교결과표명,개진산법재구해련속함수우화문제상시구유경쟁력적。
Cuckoo search (CS) is a new nature-inspired intelligent algorithm which uses the whole update and evaluation strategy on solutions. For solving multi-dimension function optimization problems, this strategy may deteriorate the convergence speed and the quality of solution of algorithm due to interference phenomena among dimensions. To overcome this shortage, a dimension by dimension improvement based cuckoo search algorithm is proposed. In the progress of iteration of improved algorithm, a dimension by dimension based update and evaluation strategy on solutions is used. The proposed strategy combines an updated value of one dimension with values of other dimensions into a new solution, and greedily accepts any updated values that can improve the solution. The simulation experiments show that the proposed strategy can improve the convergence speed and the quality of the solutions effectively. Meanwhile, the results also reveal the proposed algorithm is competitive for continuous function optimization problems compared with other improved cuckoo search algorithms and other evolution algorithms.