软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2013年
11期
2597-2609
,共13页
代价敏感降维%人脸识别%子类学习
代價敏感降維%人臉識彆%子類學習
대개민감강유%인검식별%자류학습
cost-sensitive dimensionality reduction%face recognition%subclass learning
传统的降维方法追求较低的识别错误率,假设不同错分的代价相同,这个假设在一些实际应用中往往不成立。例如,在基于人脸识别的门禁系统中,存在入侵者类和合法者类,将入侵者错分成合法者的损失往往高于将合法者错分成入侵者的损失,而将合法者错分成入侵者的损失又大于将合法者错分成其他合法者的损失。为此,首先通过对人脸识别门禁系统进行分析,将其归为一个代价敏感的子类学习问题,然后将错分代价以及子类信息同时注入判别分析的框架中,提出一种近似于成对贝叶斯风险准则的降维算法。在人脸数据集Extended Yale B以及ORL上的实验结果表明了该算法的有效性。
傳統的降維方法追求較低的識彆錯誤率,假設不同錯分的代價相同,這箇假設在一些實際應用中往往不成立。例如,在基于人臉識彆的門禁繫統中,存在入侵者類和閤法者類,將入侵者錯分成閤法者的損失往往高于將閤法者錯分成入侵者的損失,而將閤法者錯分成入侵者的損失又大于將閤法者錯分成其他閤法者的損失。為此,首先通過對人臉識彆門禁繫統進行分析,將其歸為一箇代價敏感的子類學習問題,然後將錯分代價以及子類信息同時註入判彆分析的框架中,提齣一種近似于成對貝葉斯風險準則的降維算法。在人臉數據集Extended Yale B以及ORL上的實驗結果錶明瞭該算法的有效性。
전통적강유방법추구교저적식별착오솔,가설불동착분적대개상동,저개가설재일사실제응용중왕왕불성립。례여,재기우인검식별적문금계통중,존재입침자류화합법자류,장입침자착분성합법자적손실왕왕고우장합법자착분성입침자적손실,이장합법자착분성입침자적손실우대우장합법자착분성기타합법자적손실。위차,수선통과대인검식별문금계통진행분석,장기귀위일개대개민감적자류학습문제,연후장착분대개이급자류신식동시주입판별분석적광가중,제출일충근사우성대패협사풍험준칙적강유산법。재인검수거집Extended Yale B이급ORL상적실험결과표명료해산법적유효성。
Conventional dimensionality reduction algorithms aim to attain low recognition errors, assuming the same misclassification loss from different misclassifications. In some real-world applications, however, this assumption may not hold. For example, in the door-locker syetem based on face recognition, there are impostor and gallery person. The loss of misclassifying an impostor as a gallery person is larger than misclassifying a gallery person as an impostor, while the loss of misclassifying a gallery person as an impostor can be larger than misclassifying a gallery person as other gallery persons. This paper recognizes the door-locker system based on face recognition as a cost-sensitive subclass learning problem, incorporates the subclass information and misclassification costs into the framework of discriminant analysis at the same time, and proposes a dimensionality reduction algorithm approximate to the pairwise Bayes risk. The experimental results on face datasets Extended Yale B and ORL demonstrate the superiority of the proposed algorithm.