软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2013年
11期
2522-2534
,共13页
半监督%支持向量机%拟牛顿法%多核学习%半监督支持向量机
半鑑督%支持嚮量機%擬牛頓法%多覈學習%半鑑督支持嚮量機
반감독%지지향량궤%의우돈법%다핵학습%반감독지지향량궤
semi-supervised%support vector machine (SVM)%quasi-Newton method%multiple kernel learning%semi-supervised support vector machine (S3VM)
在机器学习领域,核方法是解决非线性模式识别问题的一种有效手段.目前,用多核学习方法代替传统的单核学习已经成为一个新的研究热点,它在处理异构、不规则和分布不平坦的样本数据情况下,表现出了更好的灵活性、可解释性以及更优异的泛化性能.结合有监督学习中的多核学习方法,提出了基于Lp范数约束的多核半监督支持向量机(semi-supervised support vector machine,简称S3VM)的优化模型.该模型的待优化参数包括高维空间的决策函数fm和核组合权系数θm.同时,该模型继承了单核半监督支持向量机的非凸非平滑特性.采用双层优化过程来优化这两组参数,并采用改进的拟牛顿法和基于成对标签交换的局部搜索算法分别解决模型关于 fm的非平滑及非凸问题,以得到模型近似最优解.在多核框架中同时加入基本核和流形核,以充分利用数据的几何性质.实验结果验证了算法的有效性及较好的泛化性能.
在機器學習領域,覈方法是解決非線性模式識彆問題的一種有效手段.目前,用多覈學習方法代替傳統的單覈學習已經成為一箇新的研究熱點,它在處理異構、不規則和分佈不平坦的樣本數據情況下,錶現齣瞭更好的靈活性、可解釋性以及更優異的汎化性能.結閤有鑑督學習中的多覈學習方法,提齣瞭基于Lp範數約束的多覈半鑑督支持嚮量機(semi-supervised support vector machine,簡稱S3VM)的優化模型.該模型的待優化參數包括高維空間的決策函數fm和覈組閤權繫數θm.同時,該模型繼承瞭單覈半鑑督支持嚮量機的非凸非平滑特性.採用雙層優化過程來優化這兩組參數,併採用改進的擬牛頓法和基于成對標籤交換的跼部搜索算法分彆解決模型關于 fm的非平滑及非凸問題,以得到模型近似最優解.在多覈框架中同時加入基本覈和流形覈,以充分利用數據的幾何性質.實驗結果驗證瞭算法的有效性及較好的汎化性能.
재궤기학습영역,핵방법시해결비선성모식식별문제적일충유효수단.목전,용다핵학습방법대체전통적단핵학습이경성위일개신적연구열점,타재처리이구、불규칙화분포불평탄적양본수거정황하,표현출료경호적령활성、가해석성이급경우이적범화성능.결합유감독학습중적다핵학습방법,제출료기우Lp범수약속적다핵반감독지지향량궤(semi-supervised support vector machine,간칭S3VM)적우화모형.해모형적대우화삼수포괄고유공간적결책함수fm화핵조합권계수θm.동시,해모형계승료단핵반감독지지향량궤적비철비평활특성.채용쌍층우화과정래우화저량조삼수,병채용개진적의우돈법화기우성대표첨교환적국부수색산법분별해결모형관우 fm적비평활급비철문제,이득도모형근사최우해.재다핵광가중동시가입기본핵화류형핵,이충분이용수거적궤하성질.실험결과험증료산법적유효성급교호적범화성능.
Kernel method is an effective approach to solve the nonlinear pattern recognition problems in the field of machine learning. At present, multiple kernel method has become a new research focus. Compared with the traditional single kernel method, multiple kernel method is more flexible, more interpretable and has better generalization performance when dealing with heterogeneous, irregular and non-flat distribution samples. A multi-kernel S3VM optimization model based on Lp norm constraint is presented in this paper in accordance with kernel method of supervised learning. Such model has two sets of parameters including decision functions fm in reproducing kernel Hilbert space and weighted kernel combination coefficients, and inherits the non-smooth and non-convex properties from single-kernel based S3VM. A two-layer optimization procedure is adopted to optimize these two groups of parameters, and an improved Quasi-Newton method named subBFGS as well as a local search algorithm based on label switching in pair are used to solve non-smooth and non-convex problems respectively with respect to fm. Base kernels and manifold kernels are added into the multi-kernel framework to exploit the geometric properties of the data. Experimental results show that the proposed algorithm is effective and has excellent generation performance.