计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
12期
1483-1488
,共6页
齐婧敏%吕庆章%杨英杰%张鑫
齊婧敏%呂慶章%楊英傑%張鑫
제청민%려경장%양영걸%장흠
黄酮类化合物%木犀草素%自由基%抗氧化活性%密度泛函理论
黃酮類化閤物%木犀草素%自由基%抗氧化活性%密度汎函理論
황동류화합물%목서초소%자유기%항양화활성%밀도범함이론
flavonoid%Luteolin%free radical%antioxidant activity%DFT
采用密度泛函理论(DFT)的方法,分别从静态和动态两大方面分析了黄酮类化合物木犀草素分子不同酚羟基清除自由基活性的大小。分别从该化合物的结构参数、酚羟基(O-H)解离能、半醌式自由基电子的自旋密度分布、前线轨道相关性质分析了其性质与分子活性位的关系,深入解析了木犀草素分子上不同酚羟基清除·OH的反应历程,在UB3LYP/6-311G(d,p)水平下,优化得到了该分子C5、C7位酚羟基与·OH发生抽氢反应的过渡态结构。结果表明,C4’位O-H BDE最小,自旋密度分布最为均匀,·OH可以无需克服能垒直接夺取该位酚羟基H生成自由基和水,该位酚羟基最易失去H,抗氧化活性最大,C5位酚羟基与·OH发生抽氢反应所需要克服的能垒最大,该位酚羟基活性最小。
採用密度汎函理論(DFT)的方法,分彆從靜態和動態兩大方麵分析瞭黃酮類化閤物木犀草素分子不同酚羥基清除自由基活性的大小。分彆從該化閤物的結構參數、酚羥基(O-H)解離能、半醌式自由基電子的自鏇密度分佈、前線軌道相關性質分析瞭其性質與分子活性位的關繫,深入解析瞭木犀草素分子上不同酚羥基清除·OH的反應歷程,在UB3LYP/6-311G(d,p)水平下,優化得到瞭該分子C5、C7位酚羥基與·OH髮生抽氫反應的過渡態結構。結果錶明,C4’位O-H BDE最小,自鏇密度分佈最為均勻,·OH可以無需剋服能壘直接奪取該位酚羥基H生成自由基和水,該位酚羥基最易失去H,抗氧化活性最大,C5位酚羥基與·OH髮生抽氫反應所需要剋服的能壘最大,該位酚羥基活性最小。
채용밀도범함이론(DFT)적방법,분별종정태화동태량대방면분석료황동류화합물목서초소분자불동분간기청제자유기활성적대소。분별종해화합물적결구삼수、분간기(O-H)해리능、반곤식자유기전자적자선밀도분포、전선궤도상관성질분석료기성질여분자활성위적관계,심입해석료목서초소분자상불동분간기청제·OH적반응역정,재UB3LYP/6-311G(d,p)수평하,우화득도료해분자C5、C7위분간기여·OH발생추경반응적과도태결구。결과표명,C4’위O-H BDE최소,자선밀도분포최위균균,·OH가이무수극복능루직접탈취해위분간기H생성자유기화수,해위분간기최역실거H,항양화활성최대,C5위분간기여·OH발생추경반응소수요극복적능루최대,해위분간기활성최소。
The free radicals scavenging activity of phenolic hydroxyls on luteolin have been analyzed from static and dynamic based on the data obtained by using the density functional theory (DFT) method. The activity of the phenolic hydroxyls on different sites of luteolin is discussed by the molecular structure parameters, the dissociation energy of the phenolic hydroxyl bonds, the electron spin density distribution and the correlative property of the frontier molecular orbitals(HOMO and LUMO). The reaction process of the three phenolic hydroxyls on C4’, C5 and C7 sites scavenging hydroxyl radical(?OH) have been discussed respectively based on energy in detail. The results show that there is not energy barrier needing to get over for the C4’-O-H during scavenging hydroxyl radical(?OH). So the transition state structures according to the other two phenolic hydroxyls on C5 and C7 sites to scavenge OH free radical have been optimized by UB3LYP/6-311G(d,p) method. The energy barriers between the transition state and reaction complex are 18.6 and 0.97 KJ?mol-1 separately. The C4’-OH has the highest antioxidation activity and the C5-OH has the lowest activity.