新型工业化
新型工業化
신형공업화
New Industrialization Straregy
2011年
4期
76-85
,共10页
全光开关%群速度%光子晶体波导%慢光
全光開關%群速度%光子晶體波導%慢光
전광개관%군속도%광자정체파도%만광
all optical switch%group velocity%photonic crystal waveguide%slow light
首先,我们利用光学Kerr效应设计了一种基于周期性介质波导的全光开关。其次,我们分析比较了考虑厚度的slab结构光开关的透射特性,决定利用二维光子晶体实现集成。接着,我们通过调整光子晶体波导的参数,得到一个有低群速度,低色散的平坦区域。然后,我们给两个结构设置了合理的参数,使全光开关的信号光通道在慢光波导的平坦带内,可以保证信号光经过光开关后可以被后面结构慢下来。另外,在两个器件连接处,选择一种合适的结构,保证信号光能高效的从光开关耦合到慢光波导里,最终我们完成了两个元件的集成。当信号光需要被延迟时,让光开关为“开通”状态,信号光就可以通过整个集成器件被慢下来。如果信号光不需要延迟,那么让光开关为“关闭”状态就可以。最后我们给出了光脉冲在全光开关结构和慢光结构中传播的仿真波形,来演示集成器件的复合功能。
首先,我們利用光學Kerr效應設計瞭一種基于週期性介質波導的全光開關。其次,我們分析比較瞭攷慮厚度的slab結構光開關的透射特性,決定利用二維光子晶體實現集成。接著,我們通過調整光子晶體波導的參數,得到一箇有低群速度,低色散的平坦區域。然後,我們給兩箇結構設置瞭閤理的參數,使全光開關的信號光通道在慢光波導的平坦帶內,可以保證信號光經過光開關後可以被後麵結構慢下來。另外,在兩箇器件連接處,選擇一種閤適的結構,保證信號光能高效的從光開關耦閤到慢光波導裏,最終我們完成瞭兩箇元件的集成。噹信號光需要被延遲時,讓光開關為“開通”狀態,信號光就可以通過整箇集成器件被慢下來。如果信號光不需要延遲,那麽讓光開關為“關閉”狀態就可以。最後我們給齣瞭光脈遲在全光開關結構和慢光結構中傳播的倣真波形,來縯示集成器件的複閤功能。
수선,아문이용광학Kerr효응설계료일충기우주기성개질파도적전광개관。기차,아문분석비교료고필후도적slab결구광개관적투사특성,결정이용이유광자정체실현집성。접착,아문통과조정광자정체파도적삼수,득도일개유저군속도,저색산적평탄구역。연후,아문급량개결구설치료합리적삼수,사전광개관적신호광통도재만광파도적평탄대내,가이보증신호광경과광개관후가이피후면결구만하래。령외,재량개기건련접처,선택일충합괄적결구,보증신호광능고효적종광개관우합도만광파도리,최종아문완성료량개원건적집성。당신호광수요피연지시,양광개관위“개통”상태,신호광취가이통과정개집성기건피만하래。여과신호광불수요연지,나요양광개관위“관폐”상태취가이。최후아문급출료광맥충재전광개관결구화만광결구중전파적방진파형,래연시집성기건적복합공능。
First, we design an all-optical switch based on periodic dielectric waveguide using the optical Kerr effect. Second, we research the transmission property of slab structure optical switch, considering the thickness of dielectric. Then we choose the two dimensions photonic crystal to analyze the integration of devices. And we properly tune the structural parameters of photonic crystal waveguide, to achieve a flattened band with low group velocity and vanishing Group Velocity Dispersion. Then we set the proper parameters of two structures to make sure that the signal channel of optical switch is in the flat band of slow light waveguide, so the signal can be slowed down after pass through the optical switch. In addition, we choose the proper connection structure of the joint, to make the signal light couple into the slow light waveguide from optical switch efficiently. Ultimately we implement the integration of two elements. When the signal light needs to be delayed, we can put the optical switch “on”, then the signal light pass through the integrated device and it is slowed. If the signal needs no delay, we can put the optical switch“off”. At the end, we show simulation of the light propagation in both the optical switch and the slow light structure to demonstrate the compound function of integrated devices.