地球信息科学学报
地毬信息科學學報
지구신식과학학보
GEO-INFORMATION SCIENCE
2013年
6期
854-861
,共8页
王海起%张腾%彭佳琦%董倩楠
王海起%張騰%彭佳琦%董倩楠
왕해기%장등%팽가기%동천남
空间加权距离%GIS数据%Fuzzy C-means聚类%梯度下降学习算法
空間加權距離%GIS數據%Fuzzy C-means聚類%梯度下降學習算法
공간가권거리%GIS수거%Fuzzy C-means취류%제도하강학습산법
spatial weighted distance%GIS data%Fuzzy C-means clustering%gradient-descent learning algorithm
Fuzzy c-means聚类常采用普通欧式距离进行相似性度量,对于地理空间对象来说,聚类不仅应考虑属性特征的相似性,还应考虑对象的空间邻近性。本文基于普通欧式距离提出了多种形式的空间加权距离公式,不同的距离公式分别在两个坐标方向、各属性上进行加权,权重向量既可以度量空间位置特征、属性特征的作用大小,也可度量位置距离在X、Y空间方向上的各向同性或异性程度。权重向量的获取以空间对象相似性的模糊函数为评价目标,通过动态学习率的梯度下降算法优化计算,并将空间加权距离引入到fuzzy c-means聚类算法中以取代普通欧式距离。本文以空间数据集Meuse为应用实例,分别采用不同形式的空间加权距离进行FCM模糊聚类,类数取为2-10类,通过PC、PE和Xie-Beni等聚类有效性指标的比较表明:空间加权距离的聚类效果要优于普通距离,且在空间数据聚类分析中,除属性信息外位置等空间特征信息同样起到了重要作用。
Fuzzy c-means聚類常採用普通歐式距離進行相似性度量,對于地理空間對象來說,聚類不僅應攷慮屬性特徵的相似性,還應攷慮對象的空間鄰近性。本文基于普通歐式距離提齣瞭多種形式的空間加權距離公式,不同的距離公式分彆在兩箇坐標方嚮、各屬性上進行加權,權重嚮量既可以度量空間位置特徵、屬性特徵的作用大小,也可度量位置距離在X、Y空間方嚮上的各嚮同性或異性程度。權重嚮量的穫取以空間對象相似性的模糊函數為評價目標,通過動態學習率的梯度下降算法優化計算,併將空間加權距離引入到fuzzy c-means聚類算法中以取代普通歐式距離。本文以空間數據集Meuse為應用實例,分彆採用不同形式的空間加權距離進行FCM模糊聚類,類數取為2-10類,通過PC、PE和Xie-Beni等聚類有效性指標的比較錶明:空間加權距離的聚類效果要優于普通距離,且在空間數據聚類分析中,除屬性信息外位置等空間特徵信息同樣起到瞭重要作用。
Fuzzy c-means취류상채용보통구식거리진행상사성도량,대우지리공간대상래설,취류불부응고필속성특정적상사성,환응고필대상적공간린근성。본문기우보통구식거리제출료다충형식적공간가권거리공식,불동적거리공식분별재량개좌표방향、각속성상진행가권,권중향량기가이도량공간위치특정、속성특정적작용대소,야가도량위치거리재X、Y공간방향상적각향동성혹이성정도。권중향량적획취이공간대상상사성적모호함수위평개목표,통과동태학습솔적제도하강산법우화계산,병장공간가권거리인입도fuzzy c-means취류산법중이취대보통구식거리。본문이공간수거집Meuse위응용실례,분별채용불동형식적공간가권거리진행FCM모호취류,류수취위2-10류,통과PC、PE화Xie-Beni등취류유효성지표적비교표명:공간가권거리적취류효과요우우보통거리,차재공간수거취류분석중,제속성신식외위치등공간특정신식동양기도료중요작용。
Ordinary Euclidean distance is often used to measure similarity in fuzzy C-means, and in distance for-mula, different attribute features should have different weights according to their important degree. Moreover, for geospatial objects, clustering should consider not only similarity of attribute features, but also spatial proximi-ty of the objects. Based on ordinary Euclidean distance, several forms of spatial weighted distance are proposed in this paper. Different distance formula imposes different weight on both two coordinate directions and each at-tribute feature. The weight vector is used to measure effect sizes of spatial location features and attribute features in similarity-based clustering and also measure degree of isotropy and anisotropy along X and Y coordinate directions. A fuzzy evaluation function derived from similarity matrix of spatial objects is used as optimization objective, and the weight vector is learned by gradient-descent algorithm based on dynamic learning rate. Then, spatial weighted distance is introduced to fuzzy C-means clustering to replace ordinary Euclidean distance. Meuse dataset, a spatial dataset as the application example, is analyzed by FCM clustering and the clustering number is set to 2-10. The clustering results are evaluated and compared via cluster validity indices including PC, PE and Xie-Beni. The analysis indicates that clustering performance based on spatial weighted distance is better than ordinary Euclidean distance and spatial common distance, and further, spatial distribution of the clustering results shows that, besides attribute features, spatial features such as locations also play important roles in spatial data clustering.