地球信息科学学报
地毬信息科學學報
지구신식과학학보
GEO-INFORMATION SCIENCE
2013年
6期
846-853
,共8页
网络Voronoi图%空间优化建模%图启发式%多设施选址%粒子群算法
網絡Voronoi圖%空間優化建模%圖啟髮式%多設施選阯%粒子群算法
망락Voronoi도%공간우화건모%도계발식%다설시선지%입자군산법
Network Voronoi Diagram%Spatial Optimization Modeling%Diagram Heuristic%Multi-facilities Lo-cation%Particle Swarm Optimization
城市化区域多设施空间优化建模是一项实用的关键技术,可为城市公共资源均衡优化配置和空间决策提供支持。本文提出了网络Voronoi图启发的多设施选址粒子群空间优化建模方法,分别给出了基于常规Voronoi图启发的p-中值选址模型和最大覆盖选址模型,以及基于网络Voronoi面启发的p-中值选址模型和最大覆盖选址模型。模型采用Voronoi图定量提取设施功能覆盖和服务范围内的需求,并通过最小化重叠覆盖启发空间优化最大化覆盖分布的需求。p-中值选址模型考虑了需求随路径距离衰减的因素,最大覆盖选址模型顾及了设施对最大覆盖半径范围以内需求的完全覆盖,以及对以外区域的部分衰减覆盖。在空间优化粒子群算法中融入遗传进化机制和常规Voronoi图模拟的粒子动态邻域结构,提高了算法的全局搜索和优化性能。通过对实验区多设施进行的p-中值选址空间优化实验和最大覆盖选址空间优化实验,验证了本文提出的模型、方法和算法的有效性,可应用于城市化区域的空间优化决策支持。
城市化區域多設施空間優化建模是一項實用的關鍵技術,可為城市公共資源均衡優化配置和空間決策提供支持。本文提齣瞭網絡Voronoi圖啟髮的多設施選阯粒子群空間優化建模方法,分彆給齣瞭基于常規Voronoi圖啟髮的p-中值選阯模型和最大覆蓋選阯模型,以及基于網絡Voronoi麵啟髮的p-中值選阯模型和最大覆蓋選阯模型。模型採用Voronoi圖定量提取設施功能覆蓋和服務範圍內的需求,併通過最小化重疊覆蓋啟髮空間優化最大化覆蓋分佈的需求。p-中值選阯模型攷慮瞭需求隨路徑距離衰減的因素,最大覆蓋選阯模型顧及瞭設施對最大覆蓋半徑範圍以內需求的完全覆蓋,以及對以外區域的部分衰減覆蓋。在空間優化粒子群算法中融入遺傳進化機製和常規Voronoi圖模擬的粒子動態鄰域結構,提高瞭算法的全跼搜索和優化性能。通過對實驗區多設施進行的p-中值選阯空間優化實驗和最大覆蓋選阯空間優化實驗,驗證瞭本文提齣的模型、方法和算法的有效性,可應用于城市化區域的空間優化決策支持。
성시화구역다설시공간우화건모시일항실용적관건기술,가위성시공공자원균형우화배치화공간결책제공지지。본문제출료망락Voronoi도계발적다설시선지입자군공간우화건모방법,분별급출료기우상규Voronoi도계발적p-중치선지모형화최대복개선지모형,이급기우망락Voronoi면계발적p-중치선지모형화최대복개선지모형。모형채용Voronoi도정량제취설시공능복개화복무범위내적수구,병통과최소화중첩복개계발공간우화최대화복개분포적수구。p-중치선지모형고필료수구수로경거리쇠감적인소,최대복개선지모형고급료설시대최대복개반경범위이내수구적완전복개,이급대이외구역적부분쇠감복개。재공간우화입자군산법중융입유전진화궤제화상규Voronoi도모의적입자동태린역결구,제고료산법적전국수색화우화성능。통과대실험구다설시진행적p-중치선지공간우화실험화최대복개선지공간우화실험,험증료본문제출적모형、방법화산법적유효성,가응용우성시화구역적공간우화결책지지。
Spatial optimization modeling for multi facilities in urbanized area is a practical and key technique, and it can provide balance configuration optimization and spatial decision support for urban public resource. A method of particle swarm spatial optimization modeling for multi facilities location based on network Voronoi di-agram heuristic is proposed in this paper, in which we presented respectively some p-median location models and maximal covering location models by using ordinary Voronoi diagram heuristic and network Voronoi dia-gram heuristic. Those models can quantitatively extract the demands coved by the function and service of facili-ties through the Voronoi diagrams, and inspire spatial optimization to maximize the coverage for distributed de-mands by minimizing overlapped coverage. The proposed p-median location model considers the factor of de-mand attenuation with path distance, and the proposed maximal covering model takes it into account that facili-ty’s service provides full coverage for the demands within maximal coverage radius and partial attenuation cov-erage for the demands without maximal coverage radius. The genetic evolution mechanism and the dynamic neighborhood structure of particles simulated by ordinary Voronoi diagram are integrated in the particle swarm spatial optimization to improve global search and optimization performance of the algorithm. Through the re-search of spatial optimization configuration experiments for multi facilities in experimental city, the proposed method has been verified to be the effective and practical, it can be applied for the spatial location optimization decision in urbanized area.