微型机与应用
微型機與應用
미형궤여응용
MICROCOMPUTER & ITS APPLICATIONS
2014年
18期
35-38,44
,共5页
图像处理%帧间差分%视觉理解%交通流量统计%目标跟踪
圖像處理%幀間差分%視覺理解%交通流量統計%目標跟蹤
도상처리%정간차분%시각리해%교통류량통계%목표근종
image processing%frame difference%vision understanding%traffic flow statistics%targets tracking
传统的基于视频的交通流量统计算法需要对流量统计区域属性及换算参数进行设置,设置方法复杂繁琐,灵活性差,应用有局限性。针对这一问题,结合人类统计目标数目的思想,提出了一种基于视觉理解的交通流量统计算法,无需设定流量统计区域就能完成流量统计。该算法使用帧间差分法检测出动态目标,通过 Camshift 与 Kalman 滤波相结合的方式完成目标跟踪,再通过对跟踪目标运动的分析来对交通流数目进行校正更新,最后获得交通流量数据。实验表明,提出的算法具有较好的统计效果。
傳統的基于視頻的交通流量統計算法需要對流量統計區域屬性及換算參數進行設置,設置方法複雜繁瑣,靈活性差,應用有跼限性。針對這一問題,結閤人類統計目標數目的思想,提齣瞭一種基于視覺理解的交通流量統計算法,無需設定流量統計區域就能完成流量統計。該算法使用幀間差分法檢測齣動態目標,通過 Camshift 與 Kalman 濾波相結閤的方式完成目標跟蹤,再通過對跟蹤目標運動的分析來對交通流數目進行校正更新,最後穫得交通流量數據。實驗錶明,提齣的算法具有較好的統計效果。
전통적기우시빈적교통류량통계산법수요대류량통계구역속성급환산삼수진행설치,설치방법복잡번쇄,령활성차,응용유국한성。침대저일문제,결합인류통계목표수목적사상,제출료일충기우시각리해적교통류량통계산법,무수설정류량통계구역취능완성류량통계。해산법사용정간차분법검측출동태목표,통과 Camshift 여 Kalman 려파상결합적방식완성목표근종,재통과대근종목표운동적분석래대교통류수목진행교정경신,최후획득교통류량수거。실험표명,제출적산법구유교호적통계효과。
The traditional statistics algorithm for traffic flow based on video needs settings for the properties of the statistics area and the conversion parameters, which is complex, inferior in flexibility and also has a limitation. This paper proposes an algorithm of counting the traffic flow based on vision understanding, combining human′s thoughts of counting the number of targets, without setting the traffic flow counting area. In the algorithm, the frame difference method helps to detect the moving targets, and the combination of Camshift and Kalman filter can accomplish the tracking. Then we can correct the counting result and provide the traffic flow data as well through the analysis of the targets tracking. The result of the experiment shows that the algorithm functions well.