计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
24期
144-148
,共5页
图像压缩%分形%分形图像编码%改进转动惯量特征
圖像壓縮%分形%分形圖像編碼%改進轉動慣量特徵
도상압축%분형%분형도상편마%개진전동관량특정
image compression%fractal%fractal image coding%improved moment of inertia feature
全搜索分形图像编码过程特别耗时的原因在于,每个range块都需要在一个很大的domain块池里寻找最佳匹配domain块。为了改进这个缺点,重新定义了图像规范块的转动惯量特征,证明了它与匹配均方根误差间的关系不等式,据此提出了一个限制搜索范围来加快编码过程的算法:一个待编码range块的最佳匹配块搜索范围仅在与它的转动惯量特征值相近的domain块的邻域内搜索,邻域半径的大小由预先设置的误差阈值来确定。三幅图像的仿真结果表明,它确实能够在不降低解码图像质量的情况下,通过减少搜索范围达到了平均加快全搜索分形编码算法的编码速度26倍左右(误差阈值为10),且也优于转动惯量算法和三均值特征算法。
全搜索分形圖像編碼過程特彆耗時的原因在于,每箇range塊都需要在一箇很大的domain塊池裏尋找最佳匹配domain塊。為瞭改進這箇缺點,重新定義瞭圖像規範塊的轉動慣量特徵,證明瞭它與匹配均方根誤差間的關繫不等式,據此提齣瞭一箇限製搜索範圍來加快編碼過程的算法:一箇待編碼range塊的最佳匹配塊搜索範圍僅在與它的轉動慣量特徵值相近的domain塊的鄰域內搜索,鄰域半徑的大小由預先設置的誤差閾值來確定。三幅圖像的倣真結果錶明,它確實能夠在不降低解碼圖像質量的情況下,通過減少搜索範圍達到瞭平均加快全搜索分形編碼算法的編碼速度26倍左右(誤差閾值為10),且也優于轉動慣量算法和三均值特徵算法。
전수색분형도상편마과정특별모시적원인재우,매개range괴도수요재일개흔대적domain괴지리심조최가필배domain괴。위료개진저개결점,중신정의료도상규범괴적전동관량특정,증명료타여필배균방근오차간적관계불등식,거차제출료일개한제수색범위래가쾌편마과정적산법:일개대편마range괴적최가필배괴수색범위부재여타적전동관량특정치상근적domain괴적린역내수색,린역반경적대소유예선설치적오차역치래학정。삼폭도상적방진결과표명,타학실능구재불강저해마도상질량적정황하,통과감소수색범위체도료평균가쾌전수색분형편마산법적편마속도26배좌우(오차역치위10),차야우우전동관량산법화삼균치특정산법。
Fractal image encoding with full search typically requires a very long runtime, which is essentially spent on searching for the best-matched block to an input range block in a large domain pool. This paper thus proposes an effective method to im-prove the drawback, which is mainly based on certified inequality linking the root-mean-square and Improved Moment of Inertia (IMI)feature of normalized block. During the search process, the IMI feature is utilized to confine efficiently the search space to the vicinity of the domain block having the closest IMI feature to the input range block being encoded, aiming at reducing the searching scope of similarity matching to accelerate the encoding process. Besides, a beforehand error threshold is used to deter-mine the size of search neighbourhood. Simulation results of three standard test images show that the proposed scheme not only reduces the searching scope of best-matched to averagely obtain the speedup of 26 times or so by error threshold set 10, but also can obtain the same quality of the decoded images as the baseline algorithm with full search. Moreover, it is better than the moment of inertia algorithm and the three-mean feature algorithm.