工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2014年
2期
181-190
,共10页
惠俊军%张合新%周鑫%孟飞%张金生
惠俊軍%張閤新%週鑫%孟飛%張金生
혜준군%장합신%주흠%맹비%장금생
Lyapunov-Krasovskii (L-K)泛函%非线性扰动%自由权矩阵%线性矩阵不等式(LMI)
Lyapunov-Krasovskii (L-K)汎函%非線性擾動%自由權矩陣%線性矩陣不等式(LMI)
Lyapunov-Krasovskii (L-K)범함%비선성우동%자유권구진%선성구진불등식(LMI)
Lyapunov-Krasovskii (L-K) functional%nonlinear perturbations%free-weighing ma-trix%linear matrix inequality (LMI)
区间时滞是在实际应用当中一类重要的时滞类型。在这类系统当中,时滞往往处于一个变化的区间之内,而时滞的下界不一定为零。本文讨论一类含非线性扰动的区间变时滞系统的稳定性问题。基于时滞分解法,把时滞下界分成两个相等的子区间,通过构造包含时滞区间下界和上界新Lyapunov-Krasovskii (L-K)泛函,结合改进的自由权矩阵技术,建立了线性矩阵不等式(LMI)形式的时滞相关稳定性判据。该方法充分利用了系统的时滞信息,因而具有更低的保守性。数值算例说明了该方法的有效性和优越性。
區間時滯是在實際應用噹中一類重要的時滯類型。在這類繫統噹中,時滯往往處于一箇變化的區間之內,而時滯的下界不一定為零。本文討論一類含非線性擾動的區間變時滯繫統的穩定性問題。基于時滯分解法,把時滯下界分成兩箇相等的子區間,通過構造包含時滯區間下界和上界新Lyapunov-Krasovskii (L-K)汎函,結閤改進的自由權矩陣技術,建立瞭線性矩陣不等式(LMI)形式的時滯相關穩定性判據。該方法充分利用瞭繫統的時滯信息,因而具有更低的保守性。數值算例說明瞭該方法的有效性和優越性。
구간시체시재실제응용당중일류중요적시체류형。재저류계통당중,시체왕왕처우일개변화적구간지내,이시체적하계불일정위령。본문토론일류함비선성우동적구간변시체계통적은정성문제。기우시체분해법,파시체하계분성량개상등적자구간,통과구조포함시체구간하계화상계신Lyapunov-Krasovskii (L-K)범함,결합개진적자유권구진기술,건립료선성구진불등식(LMI)형식적시체상관은정성판거。해방법충분이용료계통적시체신식,인이구유경저적보수성。수치산례설명료해방법적유효성화우월성。
Interval time delay is an important delay type in practical systems. In such sys-tems, the delay may vary in a range for which the lower bound is not restricted to being zero. In this paper, we consider the robust stability for a class of linear systems with interval time-varying delay and nonlinear perturbations. Based on the delay decomposition approach, both the lower and upper bounds of the interval time-varying delay are proposed. By applying a new Lyapunov-Krasovskii (L-K) functional, and free-weighing matrix approach, a less conservative delay-dependent stability criteria are obtained, which are established in the forms of linear matrix inequalities (LMIs). The main advantage of the method is that more information of the interval delay is employed, and hence yields less conservative. Finally, numerical examples indicate the effectiveness and superiority of the proposed method.