农业工程学报
農業工程學報
농업공정학보
2014年
12期
115-122
,共8页
江晓东%刘诚%徐家平%杨沈斌%胡凝%石姣姣
江曉東%劉誠%徐傢平%楊瀋斌%鬍凝%石姣姣
강효동%류성%서가평%양침빈%호응%석교교
农作物%温度%光谱分析%昼夜不对称增温%冬小麦%反射光谱%一阶导数光谱
農作物%溫度%光譜分析%晝夜不對稱增溫%鼕小麥%反射光譜%一階導數光譜
농작물%온도%광보분석%주야불대칭증온%동소맥%반사광보%일계도수광보
crops%temperature%spectrum analysis%asymmetric effects of daytime and nighttime warming%winter wheat%reflectance spectrum%the first derivative spectra
全球变暖具有明显的昼夜不对称性,温度升高影响冬小麦的生长发育,也改变了其冠层的光谱反射特性。为了研究昼夜不对称增温对冬小麦冠层反射光谱特性的影响,在南京采用开放式田间增温系统,开展昼夜不对称增温的人工控制试验,利用FieldSpec Pro FR光谱仪测定了2个冬小麦品种扬麦15和徐麦31的冠层反射光谱,分析了冬小麦开花后冠层光谱反射率和一阶导数光谱,比较了2种增温方式对冠层反射光谱特性的影响。结果表明,与CK相比,昼夜不对称增温处理(白天增温1℃,夜间增温3℃,T2)的冬小麦冠层反射率,在近红外波段的下降最为显著,且以开花期的冬小麦冠层近红外波段反射率降低幅度最大。昼夜对称增温处理(白天增温2℃,夜间增温2℃,T1)下的冬小麦冠层反射率变化与T2处理后的变化相似,但其反射率降低幅度小于T2处理。在开花期,扬麦15在CK、T1、T2处理下近红外波段反射率分别为0.70、0.61、0.55,而徐麦31在CK、T1、T2处理下近红外波段反射率分别为0.65、0.60、0.52。由一阶导数光谱可以发现,T1、T2处理下,扬麦15红边位置由738 nm变为花后20 d的731和730 nm,俆麦31表现相同的规律。T1和T2处理也使得红边峰值下降,在开花期红边峰值下降幅度最大,且T2处理下降幅度较T1处理更大。与光谱反射率变化相对应,T1和T2均使2品种的叶绿素质量分数和叶面积指数(leaf area index,LAI)显著降低,以T2处理降低幅度最大。因此,昼夜不对称增温影响了冬小麦LAI、叶绿素质量分数、细胞结构和衰老程度,进而表现出冬小麦冠层反射光谱反射率的下降。
全毬變暖具有明顯的晝夜不對稱性,溫度升高影響鼕小麥的生長髮育,也改變瞭其冠層的光譜反射特性。為瞭研究晝夜不對稱增溫對鼕小麥冠層反射光譜特性的影響,在南京採用開放式田間增溫繫統,開展晝夜不對稱增溫的人工控製試驗,利用FieldSpec Pro FR光譜儀測定瞭2箇鼕小麥品種颺麥15和徐麥31的冠層反射光譜,分析瞭鼕小麥開花後冠層光譜反射率和一階導數光譜,比較瞭2種增溫方式對冠層反射光譜特性的影響。結果錶明,與CK相比,晝夜不對稱增溫處理(白天增溫1℃,夜間增溫3℃,T2)的鼕小麥冠層反射率,在近紅外波段的下降最為顯著,且以開花期的鼕小麥冠層近紅外波段反射率降低幅度最大。晝夜對稱增溫處理(白天增溫2℃,夜間增溫2℃,T1)下的鼕小麥冠層反射率變化與T2處理後的變化相似,但其反射率降低幅度小于T2處理。在開花期,颺麥15在CK、T1、T2處理下近紅外波段反射率分彆為0.70、0.61、0.55,而徐麥31在CK、T1、T2處理下近紅外波段反射率分彆為0.65、0.60、0.52。由一階導數光譜可以髮現,T1、T2處理下,颺麥15紅邊位置由738 nm變為花後20 d的731和730 nm,俆麥31錶現相同的規律。T1和T2處理也使得紅邊峰值下降,在開花期紅邊峰值下降幅度最大,且T2處理下降幅度較T1處理更大。與光譜反射率變化相對應,T1和T2均使2品種的葉綠素質量分數和葉麵積指數(leaf area index,LAI)顯著降低,以T2處理降低幅度最大。因此,晝夜不對稱增溫影響瞭鼕小麥LAI、葉綠素質量分數、細胞結構和衰老程度,進而錶現齣鼕小麥冠層反射光譜反射率的下降。
전구변난구유명현적주야불대칭성,온도승고영향동소맥적생장발육,야개변료기관층적광보반사특성。위료연구주야불대칭증온대동소맥관층반사광보특성적영향,재남경채용개방식전간증온계통,개전주야불대칭증온적인공공제시험,이용FieldSpec Pro FR광보의측정료2개동소맥품충양맥15화서맥31적관층반사광보,분석료동소맥개화후관층광보반사솔화일계도수광보,비교료2충증온방식대관층반사광보특성적영향。결과표명,여CK상비,주야불대칭증온처리(백천증온1℃,야간증온3℃,T2)적동소맥관층반사솔,재근홍외파단적하강최위현저,차이개화기적동소맥관층근홍외파단반사솔강저폭도최대。주야대칭증온처리(백천증온2℃,야간증온2℃,T1)하적동소맥관층반사솔변화여T2처리후적변화상사,단기반사솔강저폭도소우T2처리。재개화기,양맥15재CK、T1、T2처리하근홍외파단반사솔분별위0.70、0.61、0.55,이서맥31재CK、T1、T2처리하근홍외파단반사솔분별위0.65、0.60、0.52。유일계도수광보가이발현,T1、T2처리하,양맥15홍변위치유738 nm변위화후20 d적731화730 nm,서맥31표현상동적규률。T1화T2처리야사득홍변봉치하강,재개화기홍변봉치하강폭도최대,차T2처리하강폭도교T1처리경대。여광보반사솔변화상대응,T1화T2균사2품충적협록소질량분수화협면적지수(leaf area index,LAI)현저강저,이T2처리강저폭도최대。인차,주야불대칭증온영향료동소맥LAI、협록소질량분수、세포결구화쇠로정도,진이표현출동소맥관층반사광보반사솔적하강。
Global warming is one of the most important environmental issues today. Temperature data over the past ten decades show that the warming rate of the global land surface during the night is larger than that during the day. Temperature affects the growth condition of winter wheat (Triticum aestivum L.), and alters its canopy spectral reflectance. To our best knowledge, there are still rare researches on the asymmetric effects of daytime and nighttime warming on winter wheat canopy spectral reflectance. So this paper explored the asymmetric effects of daytime and nighttime warming on winter wheat canopy reflectance through experiments in an open field warming system. The experiment field is located at the agro-meteorological research station, Nanjing University of Information Science and Technology, Nanjing, China. Three treatments were carried out:asymmetry warming (daytime warming 1℃, nighttime warming 3℃, T2), symmetric warming (daytime warming 2℃, nighttime warming 2℃, T1), the control (CK), and two varieties of wheat Yangmai 15 and Xumai 31 were used. The ceramic heating lamps were used to heat the experimental plot. In order to ensure the warming effect, the work status of ceramic heating lamps was controlled by single-chip microcomputer. The ceramic heating lamps were hanged 40-50 cm above the wheat canopy to avoid harming wheat plants. The CK treatment also hanged the same ceramic heating lamps, but no power supply. Canopy reflectance was observed in the three treatments and the first derivative spectra were calculated. The canopy spectral reflectance of two varieties of winter wheat was measured by FieldSpec Pro FR spectrometer (ASD, USA). The results showed that winter wheat canopy reflectance of T2 significantly decreased in near infrared bands as compared to CK. Moreover, the canopy reflectance decreased more significantly in anthesis stage than in other growth stages. In anthesis stage, the reflectance of Yangmai 15 were 0.70, 0.61, 0.55 under T1, T2 and CK treatment in near infrared bands, while the reflectance of Xumai 31 were 0.65, 0.60, 0.52, respectively. The decrease pattern of T1 was similar to T2, but with smaller magnitude. The first derivative spectra showed that the red edge position of Yangmai 15 was 738 nm at the anthesis stage, and then shifted to 731 nm, 730 nm at 20 days after anthesis under T1, T2 treatment, respectively. Xumai 31 had the same rules. The decrease of red edge peak value in T1 and T2 was significant, especially in anthesis stage. Corresponding to the change of canopy spectral reflectance, Chlorophyll content of leaf and leaf area index of two varieties of winter wheat notably decreased in T1 treatment, especially in T2 treatment. Therefore, the changes of chlorophyll content of leaf and leaf area index, also the cell structure, resulted in the above variation in canopy spectral reflectance.