闽江学院学报
閩江學院學報
민강학원학보
JOURNAL OF MINJIANG UNIVERSITY
2012年
2期
4-8,21
,共6页
Leslie捕食食饵模型%极限环%全局渐近稳定%避难所
Leslie捕食食餌模型%極限環%全跼漸近穩定%避難所
Leslie포식식이모형%겁한배%전국점근은정%피난소
Leslie predator-prey model%limit circle%global stability%refuge
提出了一类基于比率,具有HollingⅢ功能性反应,且食饵有避难所的Leslie捕食食饵系统.通过构造恰当的Dulac函数,得到了保证该系统正平衡点全局渐近稳定的充分条件.其后,通过利用Bendixson环域定理,进一步证明了在一定条件下系统存在极限环.最后,用数值模拟验证了结果.
提齣瞭一類基于比率,具有HollingⅢ功能性反應,且食餌有避難所的Leslie捕食食餌繫統.通過構造恰噹的Dulac函數,得到瞭保證該繫統正平衡點全跼漸近穩定的充分條件.其後,通過利用Bendixson環域定理,進一步證明瞭在一定條件下繫統存在極限環.最後,用數值模擬驗證瞭結果.
제출료일류기우비솔,구유HollingⅢ공능성반응,차식이유피난소적Leslie포식식이계통.통과구조흡당적Dulac함수,득도료보증해계통정평형점전국점근은정적충분조건.기후,통과이용Bendixson배역정리,진일보증명료재일정조건하계통존재겁한배.최후,용수치모의험증료결과.
A ratio-dependent Leslie predator-prey system with Holling-Ⅲ functional response incorpora- ting a prey refuge is considered in this paper. By constructing a suitable Dulac function, sufficient conditions are obtained for the global asymptotic stability of the positive equil!brium. We also show the existence of limit cycles by using Bendixson theorem, Numeric simulations are carred out to illustrate the feasibility of the main results at last.