石油化工自动化
石油化工自動化
석유화공자동화
AUTOMATION IN PETRO-CHEMICAL INDUSTRY
2012年
2期
32-35,40
,共5页
缪啸华%宋淑群%王建华%张凌波%顾幸生
繆嘯華%宋淑群%王建華%張凌波%顧倖生
무소화%송숙군%왕건화%장릉파%고행생
差分进化算法%单纯形%模糊神经网络%软测量
差分進化算法%單純形%模糊神經網絡%軟測量
차분진화산법%단순형%모호신경망락%연측량
differential evolution%simplex method%fuzzy neural network%soft sensor
以某甲醇合成塔为研究对象,综合考虑甲醇生产过程各因素对甲醇转化率的影响,采用模糊神经网络技术,建立了甲醇转化率的软测量模型。为了提高模糊神经网络建模的精度,提出了一种改进的差分进化算法优化模糊神经网络的参数,从而获得了具有较高精度的软测量模型。以某甲醇合成塔的实际运行数据为样本进行甲醇转化率的软测量建模,结果表明该模型具有较高的精度,能够实现甲醇转化率的实时监测。
以某甲醇閤成塔為研究對象,綜閤攷慮甲醇生產過程各因素對甲醇轉化率的影響,採用模糊神經網絡技術,建立瞭甲醇轉化率的軟測量模型。為瞭提高模糊神經網絡建模的精度,提齣瞭一種改進的差分進化算法優化模糊神經網絡的參數,從而穫得瞭具有較高精度的軟測量模型。以某甲醇閤成塔的實際運行數據為樣本進行甲醇轉化率的軟測量建模,結果錶明該模型具有較高的精度,能夠實現甲醇轉化率的實時鑑測。
이모갑순합성탑위연구대상,종합고필갑순생산과정각인소대갑순전화솔적영향,채용모호신경망락기술,건립료갑순전화솔적연측량모형。위료제고모호신경망락건모적정도,제출료일충개진적차분진화산법우화모호신경망락적삼수,종이획득료구유교고정도적연측량모형。이모갑순합성탑적실제운행수거위양본진행갑순전화솔적연측량건모,결과표명해모형구유교고적정도,능구실현갑순전화솔적실시감측。
The soft sensor model for methanol conversion is constructed by adopting the fuzzy neural network technology with consideration of all the influence factors on the methanol conversion rate during the manufacture process with one methanol synthesis column as the research object. To increase the accuracy for constructing fuzzy neural network model, one improved differential evolution algorithm (DE) is proposed to optimize fuzzy neural network parameters and obtain the soft sensor model with higher accuracy. The soft sensor model for methanol conversion rate is built by using actual running data of one methanol synthesis column as the sample. The simulation results show that the soft-sensor model is of great accuracy, and can be used to realize real-time monitoring of methanol conversion rate.