暴雨灾害
暴雨災害
폭우재해
TORRENTIAL RAIN AND DISASTERS
2013年
4期
360-368
,共9页
殷志远%彭涛%杨芳%沈铁元
慇誌遠%彭濤%楊芳%瀋鐵元
은지원%팽도%양방%침철원
洪水预报%定量降水估测%定量降水预报%遗传-神经网络
洪水預報%定量降水估測%定量降水預報%遺傳-神經網絡
홍수예보%정량강수고측%정량강수예보%유전-신경망락
flood forecast%quantitative precipitation estimation (QPE)%quantitative precipitation forecast (QPF)%genetic-neural network
以湖北省清江上游水布垭控制流域为例,利用分组Z-I关系并结合地面雨量站资料对雷达估算降水进行校准,计算出流域实况平均面雨量;再利用遗传算法和神经网络相结合的方法建立订正AREM预报降水的模型;最后,将订正前后的AREM预报降水输入新安江水文模型进行洪水预报试验。结果表明:订正后AREM预报降水能明显提高过程的累计降水量预报精度,平均相对误差减小幅度在60%以上,对逐小时过程降水预报精度也有一定提高,但与实况相比仍有一定差距;订正前后AREM预报降水的洪水预报试验的确定性系数的场次平均从-32.6%提高到64.38%,洪峰相对误差从39%减小到25.04%,确定性系数的提高效果优于洪峰相对误差,整体上洪水预报精度有所提高。
以湖北省清江上遊水佈埡控製流域為例,利用分組Z-I關繫併結閤地麵雨量站資料對雷達估算降水進行校準,計算齣流域實況平均麵雨量;再利用遺傳算法和神經網絡相結閤的方法建立訂正AREM預報降水的模型;最後,將訂正前後的AREM預報降水輸入新安江水文模型進行洪水預報試驗。結果錶明:訂正後AREM預報降水能明顯提高過程的纍計降水量預報精度,平均相對誤差減小幅度在60%以上,對逐小時過程降水預報精度也有一定提高,但與實況相比仍有一定差距;訂正前後AREM預報降水的洪水預報試驗的確定性繫數的場次平均從-32.6%提高到64.38%,洪峰相對誤差從39%減小到25.04%,確定性繫數的提高效果優于洪峰相對誤差,整體上洪水預報精度有所提高。
이호북성청강상유수포오공제류역위례,이용분조Z-I관계병결합지면우량참자료대뢰체고산강수진행교준,계산출류역실황평균면우량;재이용유전산법화신경망락상결합적방법건립정정AREM예보강수적모형;최후,장정정전후적AREM예보강수수입신안강수문모형진행홍수예보시험。결과표명:정정후AREM예보강수능명현제고과정적루계강수량예보정도,평균상대오차감소폭도재60%이상,대축소시과정강수예보정도야유일정제고,단여실황상비잉유일정차거;정정전후AREM예보강수적홍수예보시험적학정성계수적장차평균종-32.6%제고도64.38%,홍봉상대오차종39%감소도25.04%,학정성계수적제고효과우우홍봉상대오차,정체상홍수예보정도유소제고。
Taking the Shuibuya control watershed in the upstream of Qingjiang in Hubei Province as an example, in this study we first use grouped Z-I relationships and radar precipitation estimates calibrated by data from surface meteorological stations to calculate the area aver-aged precipitation of the watershed. Then, genetic algorithms and neural networks method are combined to establish a revised AREM precipi-tation forecasting model in order to improve forecast accuracy of AREM precipitation. Finally, AREM precipitation data before and after ap-plying the revised model are inputted to the Xinanjiang hydrological model to examine the accuracy of the flood forecasts. Results show that the revised AREM precipitation forecasting model can significantly improve the forecast accuracy of the event cumulative precipitation. The averaged relative error reduction rate is more than 60%. Hourly precipitation forecast accuracy is also improved to some extent, although there is still some bias compared to actual observations. The averaged flood forecast deterministic coefficient of the AREM precipitation forecast by using the revised model is improved from-32.6%to 64.38%, peak relative error is decreased from 39%to 25.04%. The improvement to the deterministic coefficient is better than that to the peak relative error. The overall flood forecast accuracy has generally improved.