河北北方学院学报:自然科学版
河北北方學院學報:自然科學版
하북북방학원학보:자연과학판
Journa of Hebei North University:Natural Science Edition
2012年
2期
9-12
,共4页
反正切函数,分式%序列%级数%封闭形%恒等式
反正切函數,分式%序列%級數%封閉形%恆等式
반정절함수,분식%서렬%급수%봉폐형%항등식
arctangents%fraction%sequences%closed form%identity
利用反正切函数关系arctan F(n)-arctan F(n+1)=arctan (F(n)-F(n+1))/(1+F(n)F(n+1))得到一类反正切序列封闭形和式,利用微分法得到一类分式序列封闭形和式,并给出反正切级数与分式级数恒等式.
利用反正切函數關繫arctan F(n)-arctan F(n+1)=arctan (F(n)-F(n+1))/(1+F(n)F(n+1))得到一類反正切序列封閉形和式,利用微分法得到一類分式序列封閉形和式,併給齣反正切級數與分式級數恆等式.
이용반정절함수관계arctan F(n)-arctan F(n+1)=arctan (F(n)-F(n+1))/(1+F(n)F(n+1))득도일류반정절서렬봉폐형화식,이용미분법득도일류분식서렬봉폐형화식,병급출반정절급수여분식급수항등식.
Utilizing arctangent arctan F(n)-arctan F(n+1)=arctan (F(n)-F(n+1))/(1+F(n)F(n+1)),we get that the closed form sum of one class arctangent sequence and by differential method we get the closed form sum of one class of fractional sequences.And we obtain the identities of arctangent series and fractional series.