吉林化工学院学报
吉林化工學院學報
길림화공학원학보
JOURNAL OF JILIN INSTITUTE OF CHEMICAL TECHNOLOGY
2012年
5期
92-95
,共4页
溶胶-凝胶法%Ce1-xHoxO2-δ%固体电解质%拉曼谱%电导率
溶膠-凝膠法%Ce1-xHoxO2-δ%固體電解質%拉曼譜%電導率
용효-응효법%Ce1-xHoxO2-δ%고체전해질%랍만보%전도솔
sol-gel method%Ce1-x Hox O2- δ%solid electrolyte%raman spectra%electrical conductivity
利用溶胶-凝胶法合成固体电解质Ce1-xHoxO2-δ(x=0.05~0.30),采用X-射线衍射仪(XRD)、拉曼光谱仪(Raman)、原子力显微镜(AFM)对样品的结构进行表征,利用交流阻抗谱测试掺杂稀土Ho对其电性能的影响.XRD结果表明:800℃焙烧的所有样品均为单相立方萤石结构,Raman光谱表明:Ce0.85Ho0.15O2-δ具有氧缺位的萤石结构,AFM照片显示Ce0.85Ho0.15O2-δ致密度较好,阻抗谱结果表明:掺入Ho3+提高了Ce1-xHoxO2-δ的电导率,Ce0.85Ho0.15O2-δ的电导率最高,活化能最小,600℃时的电导率为0.016 S·cm-1,活化能为0.92 eV,比未掺杂的CeO2的电导率提高了4个数量级.
利用溶膠-凝膠法閤成固體電解質Ce1-xHoxO2-δ(x=0.05~0.30),採用X-射線衍射儀(XRD)、拉曼光譜儀(Raman)、原子力顯微鏡(AFM)對樣品的結構進行錶徵,利用交流阻抗譜測試摻雜稀土Ho對其電性能的影響.XRD結果錶明:800℃焙燒的所有樣品均為單相立方螢石結構,Raman光譜錶明:Ce0.85Ho0.15O2-δ具有氧缺位的螢石結構,AFM照片顯示Ce0.85Ho0.15O2-δ緻密度較好,阻抗譜結果錶明:摻入Ho3+提高瞭Ce1-xHoxO2-δ的電導率,Ce0.85Ho0.15O2-δ的電導率最高,活化能最小,600℃時的電導率為0.016 S·cm-1,活化能為0.92 eV,比未摻雜的CeO2的電導率提高瞭4箇數量級.
이용용효-응효법합성고체전해질Ce1-xHoxO2-δ(x=0.05~0.30),채용X-사선연사의(XRD)、랍만광보의(Raman)、원자력현미경(AFM)대양품적결구진행표정,이용교류조항보측시참잡희토Ho대기전성능적영향.XRD결과표명:800℃배소적소유양품균위단상립방형석결구,Raman광보표명:Ce0.85Ho0.15O2-δ구유양결위적형석결구,AFM조편현시Ce0.85Ho0.15O2-δ치밀도교호,조항보결과표명:참입Ho3+제고료Ce1-xHoxO2-δ적전도솔,Ce0.85Ho0.15O2-δ적전도솔최고,활화능최소,600℃시적전도솔위0.016 S·cm-1,활화능위0.92 eV,비미참잡적CeO2적전도솔제고료4개수량급.
Solid electrolyte Ce1-x HoxO2-δ (x =0.05 -0.30) was prepared by sol-gel method. Structural characteristics of the materials were investigated by means of X-ray diffraction ( XRD), Raman spectroscopy and atomic force microscope (AFM). The electrical properties of Ce1-x HoxO2-δwere analyzed by AC impedance spectroscopy. XRD measurement shows that all samples calcined at 800 ℃ were in single cubic fluorite structure. The Raman spectra shows that Ce0.85 H% 15 O2-δ is cubic fluorite structure with the oxygen vacancies; AFM image indicates that Ce0.85Ho0.15O2-δ is of higher density microstructure. Impedance spectra showes that the doping Ho3 + could improve total conductivity of the material Ce1 -xHoxO2-δ. Ce0.85Ho0. 15O2-δ is possessed of the maximum of conductivity and the minimum activation energy, σ600℃ = 0. 016 S/cm, Ea = 0. 92 eV, which is four orders of magnitude as large as that of CeO2.