数学研究
數學研究
수학연구
JOURNAL OF MATHEMATICAL STUDY
2012年
1期
82-93
,共12页
无圈边色数%2-外平面图%最大度
無圈邊色數%2-外平麵圖%最大度
무권변색수%2-외평면도%최대도
Acyclic chromatic indices%2-outerplane graph%Maximum degree
一个图G的无圈边染色是一个止常的边染色使得其不产生双色圈.Alon,Sudakov和Zaks(2001)猜想:每一个简单图G是无到(△(G)+2)-边可染的,其中△(G)是G的最大度.本文对2-外平面图族证明了该猜想成立.
一箇圖G的無圈邊染色是一箇止常的邊染色使得其不產生雙色圈.Alon,Sudakov和Zaks(2001)猜想:每一箇簡單圖G是無到(△(G)+2)-邊可染的,其中△(G)是G的最大度.本文對2-外平麵圖族證明瞭該猜想成立.
일개도G적무권변염색시일개지상적변염색사득기불산생쌍색권.Alon,Sudakov화Zaks(2001)시상:매일개간단도G시무도(△(G)+2)-변가염적,기중△(G)시G적최대도.본문대2-외평면도족증명료해시상성립.
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycle is produced. Alon, Sudakov and Zaks (2001) conjectured that every simple graph G is acyclically (△(G) + 2)-edge colorable, where △(G) is the maximum degree of G. In this paper, we confirm this conjecture for the class of 2-outerplane graphs.