电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2014年
9期
1731-1737
,共7页
人工蜂群算法%混沌理论%鲶鱼效应%支持向量机%行为识别
人工蜂群算法%混沌理論%鯰魚效應%支持嚮量機%行為識彆
인공봉군산법%혼돈이론%염어효응%지지향량궤%행위식별
artificial bee colony algorithm%chaos theory%catfish effect%support vector machine%activity recognition
针对目前人工蜂群算法的早熟收敛、陷入局部极值等问题,提出一种基于混沌鲶鱼效应的改进人工蜂群算法。首先,采用随机性更高的混沌序列初始化蜂群以扩大其遍布范围;其次,集成了鲶鱼效应和混沌理论提出了混沌鲶鱼蜂,并引入了它与跌入局部极值的蜂群之间的有效竞争协调机制,从而增进蜜蜂群体跳出局部最优解、加速收敛的能力。支持向量机的学习能力主要取决于其惩罚因子 C和核函数参数的合理选择,对其参数的优化可以提升其学习效果,然而现行算法均存在一定局限性。基于我们提出的改进人工蜂群算法,对支持向量机的参数进行了优化。最后,在UCI (加州大学欧文分校)数据集和行为识别真实数据集上进行了测试,验证基于改进人工蜂群算法的支持向量机具有更强的分类性能。
針對目前人工蜂群算法的早熟收斂、陷入跼部極值等問題,提齣一種基于混沌鯰魚效應的改進人工蜂群算法。首先,採用隨機性更高的混沌序列初始化蜂群以擴大其遍佈範圍;其次,集成瞭鯰魚效應和混沌理論提齣瞭混沌鯰魚蜂,併引入瞭它與跌入跼部極值的蜂群之間的有效競爭協調機製,從而增進蜜蜂群體跳齣跼部最優解、加速收斂的能力。支持嚮量機的學習能力主要取決于其懲罰因子 C和覈函數參數的閤理選擇,對其參數的優化可以提升其學習效果,然而現行算法均存在一定跼限性。基于我們提齣的改進人工蜂群算法,對支持嚮量機的參數進行瞭優化。最後,在UCI (加州大學歐文分校)數據集和行為識彆真實數據集上進行瞭測試,驗證基于改進人工蜂群算法的支持嚮量機具有更彊的分類性能。
침대목전인공봉군산법적조숙수렴、함입국부겁치등문제,제출일충기우혼돈염어효응적개진인공봉군산법。수선,채용수궤성경고적혼돈서렬초시화봉군이확대기편포범위;기차,집성료염어효응화혼돈이론제출료혼돈염어봉,병인입료타여질입국부겁치적봉군지간적유효경쟁협조궤제,종이증진밀봉군체도출국부최우해、가속수렴적능력。지지향량궤적학습능력주요취결우기징벌인자 C화핵함수삼수적합리선택,대기삼수적우화가이제승기학습효과,연이현행산법균존재일정국한성。기우아문제출적개진인공봉군산법,대지지향량궤적삼수진행료우화。최후,재UCI (가주대학구문분교)수거집화행위식별진실수거집상진행료측시,험증기우개진인공봉군산법적지지향량궤구유경강적분류성능。
There are the disadvantages of easily falling into premature convergence and local optimal solution which the ele-mentary artificial bee colony algorithm had in some degree .Chaotic Catfish effect was hence adopted in this paper to achieve the op-timum performance of artificial bee colony algorithm ,in which ,chaotic mechanism was conducted to instantiate each individual of the swarm firstly owing to its marvelous intrinsic randomness .Then the efficacious competition and coordination mechanism among Catfish bees which were derived from the integration of Chaos theory with Catfish effect and originals were intended to boost the ca-pabilities of them leaping out of local optimal solution and converging expeditiously .The practicability of Support Vector Machines (SVM )is excessively affected due to the difficulty of selecting appropriate penalty factor C and kernel function parameter of SVM . Conversely ,all of the common SVM parameters optimization methods have their respective disadvantages with some degree of com-petence .We utilized the improved artificial bee colony algorithm to optimize the two parameters of SVM ,simultaneously ,the public datasets from the University of California-Irvine (UCI )and the activity recognition reality data were employed for evaluating the pro-posed model .Experimental results demonstrate that the classification accuracy obtained by the developed SVM was higher.