新疆大学学报(自然科学版)
新疆大學學報(自然科學版)
신강대학학보(자연과학판)
XINJIANG UNIVERSITY JOURNAL(NATURAL SCIENCE EDITION)
2013年
3期
278-281
,共4页
阿依古丽·马木提%秦学姣
阿依古麗·馬木提%秦學姣
아의고려·마목제%진학교
脆弱性%完整度%覆盖数
脆弱性%完整度%覆蓋數
취약성%완정도%복개수
Vulnerability%Integrity%Covering number
非完全连通图G的完整度可用来检测一个网络的脆弱性且被定义为I(G)=min{|S |+τ(G-S )},其中S和τ(G-S )分别指V 的子集和G-S 最大连通分支的阶。 G1和G2的冠图,记为G1?G2,被构成G1的一个拷贝和G2的|V(G1)|个拷贝,且G1的第i个顶点与G2的第i个拷贝的每个顶点相连。 G1和G2的边冠图,记为G1?G2,被构成G1的一个拷贝和G2的|E(G1)|个拷贝,且G1的第i条边的两个端点与G2的第i个拷贝的每个顶点相连。在本文中给出了当G1是路,圈,轮,星完全图和树时,冠图和边冠图的完整度。
非完全連通圖G的完整度可用來檢測一箇網絡的脆弱性且被定義為I(G)=min{|S |+τ(G-S )},其中S和τ(G-S )分彆指V 的子集和G-S 最大連通分支的階。 G1和G2的冠圖,記為G1?G2,被構成G1的一箇拷貝和G2的|V(G1)|箇拷貝,且G1的第i箇頂點與G2的第i箇拷貝的每箇頂點相連。 G1和G2的邊冠圖,記為G1?G2,被構成G1的一箇拷貝和G2的|E(G1)|箇拷貝,且G1的第i條邊的兩箇耑點與G2的第i箇拷貝的每箇頂點相連。在本文中給齣瞭噹G1是路,圈,輪,星完全圖和樹時,冠圖和邊冠圖的完整度。
비완전련통도G적완정도가용래검측일개망락적취약성차피정의위I(G)=min{|S |+τ(G-S )},기중S화τ(G-S )분별지V 적자집화G-S 최대련통분지적계。 G1화G2적관도,기위G1?G2,피구성G1적일개고패화G2적|V(G1)|개고패,차G1적제i개정점여G2적제i개고패적매개정점상련。 G1화G2적변관도,기위G1?G2,피구성G1적일개고패화G2적|E(G1)|개고패,차G1적제i조변적량개단점여G2적제i개고패적매개정점상련。재본문중급출료당G1시로,권,륜,성완전도화수시,관도화변관도적완정도。
The integrity I(G) of a non-complete connected graph G is a measure of network invulnerability and is defined by I(G)=min{|S|+τ(G-S )}, where S andτ(G-S ) denote the subset of V and the order of the largest component of G-S , respectively. The corona of two graphs G1 and G2, written as G1?G2, is the graph obtaining by taking one copy of G1 and|V(G1)|copies of G2, and then joining the i-th vertex of G1 to every vertex in the i-th copy of G2. The edge corona of two graphs G1 and G2, written as G1 ?G2, is the graph obtaining by taking one copy of G1 and|E(G1)|copies of G2, and then joining two end-vertices of the i-th edge of G1 to every vertex in the i-th copy of G2. In this paper, we investigate the integrity of the corona and edge corona of two graphs,when G1 belongs to some families as paths, cycles, wheels, stars complete graphs and tree.