天文学进展
天文學進展
천문학진전
PROGRESS IN ASTRONOMY
2013年
4期
425-441
,共17页
宇宙学%元素丰度%贫金属星%锂
宇宙學%元素豐度%貧金屬星%鋰
우주학%원소봉도%빈금속성%리
the Universe%abundances%metal-poor stars%Li
贫金属星一般指形成于宇宙早期的年老恒星,近几年观测发现的几颗极贫金属星,推测其年龄与银河系年龄相近。通过研究它们的锂丰度可以为银河系及早期恒星的形成与演化研究提供观测限制。对金属丰度较低,且Teff >5700 K的主序星进行研究发现,其锂丰度与金属丰度和有效温度无关,这种现象被称为“锂丰度平台”。随着样本数的增加,一些研究发现锂丰度与金属丰度和有效温度之间有一定的相关性。对贫金属星的样本分析结果显示,锂丰度平台在贫金属端的恒定性被破坏,具体表现为锂丰度随金属丰度的降低而急剧下降,并且伴随更大的弥散。对此有两种的解释:(1)不同的研究手段或分析方法给出不同的锂丰度值,使得样本呈现出锂平台被破坏的现象;(2)有相应的物理机制使得样本中的锂被消耗。诞生于宇宙早期的贫金属星,其锂丰度接近于宇宙早期的锂丰度值,而原初锂丰度与宇宙学模型参数中的重子数密度有关,因此可以用贫金属星的锂丰度值来限制宇宙学模型参数。
貧金屬星一般指形成于宇宙早期的年老恆星,近幾年觀測髮現的幾顆極貧金屬星,推測其年齡與銀河繫年齡相近。通過研究它們的鋰豐度可以為銀河繫及早期恆星的形成與縯化研究提供觀測限製。對金屬豐度較低,且Teff >5700 K的主序星進行研究髮現,其鋰豐度與金屬豐度和有效溫度無關,這種現象被稱為“鋰豐度平檯”。隨著樣本數的增加,一些研究髮現鋰豐度與金屬豐度和有效溫度之間有一定的相關性。對貧金屬星的樣本分析結果顯示,鋰豐度平檯在貧金屬耑的恆定性被破壞,具體錶現為鋰豐度隨金屬豐度的降低而急劇下降,併且伴隨更大的瀰散。對此有兩種的解釋:(1)不同的研究手段或分析方法給齣不同的鋰豐度值,使得樣本呈現齣鋰平檯被破壞的現象;(2)有相應的物理機製使得樣本中的鋰被消耗。誕生于宇宙早期的貧金屬星,其鋰豐度接近于宇宙早期的鋰豐度值,而原初鋰豐度與宇宙學模型參數中的重子數密度有關,因此可以用貧金屬星的鋰豐度值來限製宇宙學模型參數。
빈금속성일반지형성우우주조기적년로항성,근궤년관측발현적궤과겁빈금속성,추측기년령여은하계년령상근。통과연구타문적리봉도가이위은하계급조기항성적형성여연화연구제공관측한제。대금속봉도교저,차Teff >5700 K적주서성진행연구발현,기리봉도여금속봉도화유효온도무관,저충현상피칭위“리봉도평태”。수착양본수적증가,일사연구발현리봉도여금속봉도화유효온도지간유일정적상관성。대빈금속성적양본분석결과현시,리봉도평태재빈금속단적항정성피파배,구체표현위리봉도수금속봉도적강저이급극하강,병차반수경대적미산。대차유량충적해석:(1)불동적연구수단혹분석방법급출불동적리봉도치,사득양본정현출리평태피파배적현상;(2)유상응적물리궤제사득양본중적리피소모。탄생우우주조기적빈금속성,기리봉도접근우우주조기적리봉도치,이원초리봉도여우주학모형삼수중적중자수밀도유관,인차가이용빈금속성적리봉도치래한제우주학모형삼수。
Metal-poor stars are long-lived objects which were formed in the early Universe. These stars are crucial to our understanding of the early evolution of the Galaxy. It has been noticed that the Li abundance of metal-poor, near main-sequence turn-off stars seems independent of the metallicity and effective temperature in the temperature range Teff = 5700 ~ 6250 K, which is called Spite Plateau. Based on larger sample of metal-poor stars, trends of Li abundance with Teff and [Fe/H] have been found. There is no final conclusion of the cause of the slope. Analysis of Li abundances of the metal-poor halo stars shows that the Spite Plateau does not exist anymore at the lowest metallicities; instead, the Li abundance decreases sharply at lower metallicities, and shows increased scatter. Two explanations are proposed: (1) the uncertainties of the Li abundance were dominated by the uncertainty of the stellar atmospheric parameters;(2) Li could have been destroyed in some metal-poor stars. The mean abundance of the Spite Plateau lies below the value that has been predicted from the results of WMAP, interpreted in terms of the predictions of SBBN. The detailed understanding of the physics responsible for the difference between them is still lacking. Because metal-poor stars were born in early universe, their Li abundance is close to the primordial value which is a key prediction of models of big bang nucleosynthesis. Thus Li abundance in metal-poor stars can be used to constrain parameters of cosmological models. In recent years, several newly found ultra metal-poor stars have been suggested that they are as old as the Milky Way. Two of them have been discussed frequently because their chemical composition is highly peculiar. Li abundance cannot be detected in the atmosphere of these two stars and one of them shows no strong enhancement in carbon and nitrogen, and has a global metallicity more than four orders of magnitude lower than the solar one. Analyzing the chemical abundance of these old stars can provide more information on the formation and evolution of the Milky Way and the first generation of stars.