佳木斯大学学报(自然科学版)
佳木斯大學學報(自然科學版)
가목사대학학보(자연과학판)
JOURNAL OF JIAMUSI UNIVERSITY (NATURAL SCIENCE EDITION)
2013年
6期
890-894
,共5页
边平勇%石永奎%张序萍
邊平勇%石永奎%張序萍
변평용%석영규%장서평
朴素贝叶斯分类器%煤与瓦斯突出%预测
樸素貝葉斯分類器%煤與瓦斯突齣%預測
박소패협사분류기%매여와사돌출%예측
naive Bayes classifier%coal and gas outburst%forecast
选取了影响煤与瓦斯突出的5个因素作为属性条件,把突出强度作为目标变量,利用训练样本对朴素贝叶斯分类器模型进行了学习训练,对测试样本进行了预测,从结果来看精确度较高。因此朴素贝叶斯分类器模型预测煤与瓦斯突出强度是有效的。
選取瞭影響煤與瓦斯突齣的5箇因素作為屬性條件,把突齣彊度作為目標變量,利用訓練樣本對樸素貝葉斯分類器模型進行瞭學習訓練,對測試樣本進行瞭預測,從結果來看精確度較高。因此樸素貝葉斯分類器模型預測煤與瓦斯突齣彊度是有效的。
선취료영향매여와사돌출적5개인소작위속성조건,파돌출강도작위목표변량,이용훈련양본대박소패협사분류기모형진행료학습훈련,대측시양본진행료예측,종결과래간정학도교고。인차박소패협사분류기모형예측매여와사돌출강도시유효적。
Five factors affecting coal and gas outburst were selected as condition attributes , and coal and gas outburst intensity as the target variable .The naive Bayes classifier model was trained using the training sam-ples .The coal and gas outburst intensity was forecasted using the test samples .And the prediction results showed that the prediction accuracy of the NB model is higher .So the NB method is effective for coal and gas outburst intensity prediction .