高等数学研究
高等數學研究
고등수학연구
STUDIES IN COLLEGE MATHEMATICS
2013年
6期
1-2,20
,共3页
无穷限反常积分%收敛%柯西收敛准则
無窮限反常積分%收斂%柯西收斂準則
무궁한반상적분%수렴%가서수렴준칙
infinite integral%convergence%Cauchy convergence criteria
+∞根据无穷限反常积分∫a f (x)dx收敛的柯西准则和定积分的性质,讨论被积函数 f(x)当 x →+∞+∞时的极限状态,并得出当无穷限反常积分∫a f (x)d x收敛且 f (x)在[a ,+∞)上连续,或者无穷限反常积分a f (x)d x绝对收敛时,存在数列{xn}?[a ,+∞)且 xn →+∞(n →∞),使limn→∞xn f (xn )=0.+∞∫
+∞根據無窮限反常積分∫a f (x)dx收斂的柯西準則和定積分的性質,討論被積函數 f(x)噹 x →+∞+∞時的極限狀態,併得齣噹無窮限反常積分∫a f (x)d x收斂且 f (x)在[a ,+∞)上連續,或者無窮限反常積分a f (x)d x絕對收斂時,存在數列{xn}?[a ,+∞)且 xn →+∞(n →∞),使limn→∞xn f (xn )=0.+∞∫
+∞근거무궁한반상적분∫a f (x)dx수렴적가서준칙화정적분적성질,토론피적함수 f(x)당 x →+∞+∞시적겁한상태,병득출당무궁한반상적분∫a f (x)d x수렴차 f (x)재[a ,+∞)상련속,혹자무궁한반상적분a f (x)d x절대수렴시,존재수렬{xn}?[a ,+∞)차 xn →+∞(n →∞),사limn→∞xn f (xn )=0.+∞∫
In this paper ,the limit of an integrand function f (x) as x →+ ∞ is discussed . Using Cauchy convergence criteria for improper integrals and the properties of definite integrals , we obtain the following result . If the improper integral∫+∞a f (x)dx is convergent and f is continuous ,or if∫+∞a f (x)d x is absolutely convergent ,there exists a sequence{xn} ?[a ,+ ∞) with xn → + ∞(n → ∞) such that limn→ ∞xn f (xn ) = 0 .