中国材料进展
中國材料進展
중국재료진전
MATERIALS CHINA
2013年
10期
611-622
,共12页
生物材料表面%细胞行为%微米结构%纳米结构
生物材料錶麵%細胞行為%微米結構%納米結構
생물재료표면%세포행위%미미결구%납미결구
Biomaterial surface%osteogenetic cell%micro-structure%nano-structure
生物医用材料表面性能,包括表面形貌与化学组成,对诱导骨组织形成并形成骨整合具有重要作用。细胞行为对基底表面形貌和组成的依赖性决定了设计不同功能表面的重要性。作者小组多年来从事生物材料表面微纳结构相关研究。在微图形方面,结合微加工和磁控溅射技术制备出的羟基磷灰石微沟槽;采用溶胶-凝胶与复制微模塑相结合的方法制备了 TiO2微图形;采用掩模曝光电化学微加工技术和喷射电化学微加工技术,在钛基底上制备多孔微图形;通过转移微模塑法与自组装技术相结合,得到壳聚糖与牛血清蛋白复合微图形。在纳米结构方面,采用电化学阳极氧化处理,获得一定管径和管长的二氧化钛纳米管。在微纳多级结构方面,结合高压微弧氧化和低压阳极氧化制备了微纳多级结构钛表面。除了考虑微纳结构单独效应之外,还考虑了微纳结构化与生物功能化的协同效应,即在具有微纳结构的生物材料表面通过层层自组装等手段进行生物化学修饰。最后通过成骨相关细胞培养实验及体内植入实验,考察各试样的生物活性。研究表明,微米尺度表面促进骨细胞粘附、增殖、分化等,而纳米尺寸结构以及微纳多级结构对细胞功能具有进一步促进作用。微纳结构化与表面功能化修饰存在有协同效应。这些研究结果为微纳米技术应用于人体植入研究提供了新方向。
生物醫用材料錶麵性能,包括錶麵形貌與化學組成,對誘導骨組織形成併形成骨整閤具有重要作用。細胞行為對基底錶麵形貌和組成的依賴性決定瞭設計不同功能錶麵的重要性。作者小組多年來從事生物材料錶麵微納結構相關研究。在微圖形方麵,結閤微加工和磁控濺射技術製備齣的羥基燐灰石微溝槽;採用溶膠-凝膠與複製微模塑相結閤的方法製備瞭 TiO2微圖形;採用掩模曝光電化學微加工技術和噴射電化學微加工技術,在鈦基底上製備多孔微圖形;通過轉移微模塑法與自組裝技術相結閤,得到殼聚糖與牛血清蛋白複閤微圖形。在納米結構方麵,採用電化學暘極氧化處理,穫得一定管徑和管長的二氧化鈦納米管。在微納多級結構方麵,結閤高壓微弧氧化和低壓暘極氧化製備瞭微納多級結構鈦錶麵。除瞭攷慮微納結構單獨效應之外,還攷慮瞭微納結構化與生物功能化的協同效應,即在具有微納結構的生物材料錶麵通過層層自組裝等手段進行生物化學脩飾。最後通過成骨相關細胞培養實驗及體內植入實驗,攷察各試樣的生物活性。研究錶明,微米呎度錶麵促進骨細胞粘附、增殖、分化等,而納米呎吋結構以及微納多級結構對細胞功能具有進一步促進作用。微納結構化與錶麵功能化脩飾存在有協同效應。這些研究結果為微納米技術應用于人體植入研究提供瞭新方嚮。
생물의용재료표면성능,포괄표면형모여화학조성,대유도골조직형성병형성골정합구유중요작용。세포행위대기저표면형모화조성적의뢰성결정료설계불동공능표면적중요성。작자소조다년래종사생물재료표면미납결구상관연구。재미도형방면,결합미가공화자공천사기술제비출적간기린회석미구조;채용용효-응효여복제미모소상결합적방법제비료 TiO2미도형;채용엄모폭광전화학미가공기술화분사전화학미가공기술,재태기저상제비다공미도형;통과전이미모소법여자조장기술상결합,득도각취당여우혈청단백복합미도형。재납미결구방면,채용전화학양겁양화처리,획득일정관경화관장적이양화태납미관。재미납다급결구방면,결합고압미호양화화저압양겁양화제비료미납다급결구태표면。제료고필미납결구단독효응지외,환고필료미납결구화여생물공능화적협동효응,즉재구유미납결구적생물재료표면통과층층자조장등수단진행생물화학수식。최후통과성골상관세포배양실험급체내식입실험,고찰각시양적생물활성。연구표명,미미척도표면촉진골세포점부、증식、분화등,이납미척촌결구이급미납다급결구대세포공능구유진일보촉진작용。미납결구화여표면공능화수식존재유협동효응。저사연구결과위미납미기술응용우인체식입연구제공료신방향。
Surface properties including topography and chemistry are of great significance in deciding the response of tis-sue to implants.Our group has been engaged in researches on micro/nano structured biomaterial surfaces for a long time. This article reviews our series works on osteogenetic cells behavior on biomaterial surfaces with micro-and nano-structures. For micro-patterns, hydroxyapatite microgrooves were prepared by combining micro-fabrication technology and magnetron sputtering technology; TiO2 micropatterns were obtained by combining sol-gel and replica molding; Micro-patterned Ti substrates were prepared by using a through mask electrochemical micromachining and a jet electrochemical micromachin-ing technology;chitosan /bovine serum albumin micropatterns were prepared on functionalized Ti surfaces by micro-trans-fer molding combined with self-assembly.For nanostructures, titania nanotubes with various diameters and lengths were prepared by a electrochemical anodic oxidation treatment.For micro-nano hierarchical structures, titania micropores modi-fied with nanotubes were obtained by high voltage micro-arc oxidation and low voltage anodization.In addition to consider-ing the effects of micro-nano structure alone, the synergistic effects of struturalization and biofunctionalization of biomateri-al surfaces were investigated, which were realized through layer-by-layer self-assembly and other means of biochemical modification on micro/nano structured surfaces.Finally, in vitro osteogenetic cell culture and in vivo study were conducted to investigate the biological activity of various sample .The re-sults indicate that micro-scale topographical features promote cell adhesion, bone ingrowth and the formation of mechanical interlocking between the implant surfaces and bone tissue .The nano-scale features, including nanotubes, nanofibers and nan-odots, can generate preferential interactions with a biological system at protein and cellular levels, such as cell proliferation, differentiation, and gene expression.The micro/nano hierarchical surface structures further enhance cell activity.The mi-cro/nano structures and biofuctionalization with biomolecules and biofilms have synergistic effects on cell behaviors .These studies provide a potential new direction for the application of micro/nano technology on implant surface modification .