生态环境学报
生態環境學報
생태배경학보
ECOLOGY AND ENVIRONMENT
2013年
10期
1658-1664
,共7页
王琰%俞艳霞%张先平%王孟本
王琰%俞豔霞%張先平%王孟本
왕염%유염하%장선평%왕맹본
森林%吕梁山%双向指示种分析%碳密度%空间格局
森林%呂樑山%雙嚮指示種分析%碳密度%空間格跼
삼림%려량산%쌍향지시충분석%탄밀도%공간격국
forest%Lüliang mountains%two-way indicator species analysis%carbon density%spatial pattern
基于2000年和2005年两期森林资源清查资料,利用双向指示种分析( two-way indicator species analysis, TWINSPAN)方法,对森林植被进行群系划分;采用生物量换算因子法,对森林样地碳密度进行估算,对碳密度及其动态变化特征进行研究;基于地统计学原理对森林碳密度的空间分布格局进行分析,并对其影响因子进行探讨。结果表明,(1)吕梁山南段森林植被可分为9个群系,即臭椿群系、柳树群系、辽东栎-油松混交群系、辽东栎群系、辽东栎-枫树混交群系、辽东栎-白桦-山杨混交群系、白皮松-辽东栎混交群系、白皮松-侧柏混交群系和槐树群系。2000年各群系的碳密度值介于23.53 Mg·hm-2和75.65 Mg·hm-2之间,平均值为54.90 Mg·hm-2;2005年的碳密度值介于24.16 Mg·hm-2和78.91 Mg·hm-2之间,平均值为57.20 Mg·hm-2,5年间9个森林群系的碳密度增加了2.30 Mg·hm-2。(2)森林碳密度呈现出自南向北、自西向东增加的趋势;球状模型能很好地反映森林植被碳密度的空间结构特征;碳密度分布主要受结构性因子影响,空间依赖性较强,在小尺度上没有明显规律,而在中尺度上有群团状分布的特点。(3)随着海拔的升高,森林碳密度先增后降,1600~1800 m最大;坡上部森林碳密度最高,其次为坡下部,山脊部最低;阴坡半阴坡森林碳密度一般高于阳坡和半阳坡,无坡向处最低;斜坡和平坡碳密度值明显高于其他坡地,急坡地最小。
基于2000年和2005年兩期森林資源清查資料,利用雙嚮指示種分析( two-way indicator species analysis, TWINSPAN)方法,對森林植被進行群繫劃分;採用生物量換算因子法,對森林樣地碳密度進行估算,對碳密度及其動態變化特徵進行研究;基于地統計學原理對森林碳密度的空間分佈格跼進行分析,併對其影響因子進行探討。結果錶明,(1)呂樑山南段森林植被可分為9箇群繫,即臭椿群繫、柳樹群繫、遼東櫟-油鬆混交群繫、遼東櫟群繫、遼東櫟-楓樹混交群繫、遼東櫟-白樺-山楊混交群繫、白皮鬆-遼東櫟混交群繫、白皮鬆-側柏混交群繫和槐樹群繫。2000年各群繫的碳密度值介于23.53 Mg·hm-2和75.65 Mg·hm-2之間,平均值為54.90 Mg·hm-2;2005年的碳密度值介于24.16 Mg·hm-2和78.91 Mg·hm-2之間,平均值為57.20 Mg·hm-2,5年間9箇森林群繫的碳密度增加瞭2.30 Mg·hm-2。(2)森林碳密度呈現齣自南嚮北、自西嚮東增加的趨勢;毬狀模型能很好地反映森林植被碳密度的空間結構特徵;碳密度分佈主要受結構性因子影響,空間依賴性較彊,在小呎度上沒有明顯規律,而在中呎度上有群糰狀分佈的特點。(3)隨著海拔的升高,森林碳密度先增後降,1600~1800 m最大;坡上部森林碳密度最高,其次為坡下部,山脊部最低;陰坡半陰坡森林碳密度一般高于暘坡和半暘坡,無坡嚮處最低;斜坡和平坡碳密度值明顯高于其他坡地,急坡地最小。
기우2000년화2005년량기삼림자원청사자료,이용쌍향지시충분석( two-way indicator species analysis, TWINSPAN)방법,대삼림식피진행군계화분;채용생물량환산인자법,대삼림양지탄밀도진행고산,대탄밀도급기동태변화특정진행연구;기우지통계학원리대삼림탄밀도적공간분포격국진행분석,병대기영향인자진행탐토。결과표명,(1)려량산남단삼림식피가분위9개군계,즉취춘군계、류수군계、료동력-유송혼교군계、료동력군계、료동력-풍수혼교군계、료동력-백화-산양혼교군계、백피송-료동력혼교군계、백피송-측백혼교군계화괴수군계。2000년각군계적탄밀도치개우23.53 Mg·hm-2화75.65 Mg·hm-2지간,평균치위54.90 Mg·hm-2;2005년적탄밀도치개우24.16 Mg·hm-2화78.91 Mg·hm-2지간,평균치위57.20 Mg·hm-2,5년간9개삼림군계적탄밀도증가료2.30 Mg·hm-2。(2)삼림탄밀도정현출자남향북、자서향동증가적추세;구상모형능흔호지반영삼림식피탄밀도적공간결구특정;탄밀도분포주요수결구성인자영향,공간의뢰성교강,재소척도상몰유명현규률,이재중척도상유군단상분포적특점。(3)수착해발적승고,삼림탄밀도선증후강,1600~1800 m최대;파상부삼림탄밀도최고,기차위파하부,산척부최저;음파반음파삼림탄밀도일반고우양파화반양파,무파향처최저;사파화평파탄밀도치명현고우기타파지,급파지최소。
Forest carbon storage, one of the major carbon pools of terrestrial ecosystems, plays an important role in terrestrial carbon cycle. However, little research has been conducted on the features of carbon storage and spatial distribution of forest vegetation in Shanxi Province, China. In the present study, based on the forest inventory data in 2000 and 2005, the authors characterized the carbon density and its spatial distribution patterns of the forests in the South Lüliang Mountains (Shanxi Province, China). The forests were classified using Two-Way Indicator Species Analysis (TWINSPAN) method;the carbon density of them was estimated using the variable BEF (Biomass Expansion Factor) method, and the spatial distribution patterns of carbon density for these forests were analyzed based on geo-statistics theory. The results showed that the forest vegetation was classified into 9 formations, i.e. Form. Ailanthus altissima, Form. Salix babylonica, Form. Quercus liaotungensis + Pinus tabulaeformis, Form. Quercus liaotungensis, Form. Quercusliaotungensis + Liquidamdar formosana, Form. Quercus liaotungensis+Betula platyphylla + Populus davidiana, Form. Pinus bungeana+Quercus liaotungensis, Form. Pinus bungeana+Platycladus orientalis,and Form. Sophora japonica. The average carbon density of these formations was 54.90 Mg·hm-2 in 2000 and 57.20 Mg·hm-2 in 2005, respectively, with a range of 23.53 Mg·hm-2 to 75.65 Mg·hm-2 in 2000, and 24.16 Mg·hm-2 to 78.91 Mg·hm-2 in 2005, and the average increase of forest carbon density was 2.30 Mg·hm-2 during the study period. The spatial heterogeneity of carbon density could be well described by spherical model. The distribution of forest carbon density was mainly affected by structural factors. The forest carbon density had a strong spatial dependence, without obvious trend on a small scale, while with cluster-shaped feature on a middle scale. The forest carbon density showed increasing trends from south to north and from west to east across the study area. The spatial distribution of forest carbon density was also influenced by altitudinal gradient, slope position, slope aspect, and slope gradient. The forest carbon density first increased and then decreased with the altitude increase, with the maximum value at 1 600-1 800 m. It was the highest in slope top and the second in slope bottom, while it was the lowest in the ridge area. The forest carbon density was higher at shady and half-shady slopes than at sunny and half-sunny slopes, and it was significantly higher at slope and flat ground than other slopes, with the lowest at steep slope.