红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
11期
3096-3102
,共7页
李新娥%任建岳%吕增明%沙巍%张立国%何斌
李新娥%任建嶽%呂增明%沙巍%張立國%何斌
리신아%임건악%려증명%사외%장입국%하빈
图像融合%非下采样Contourlet变换%脉冲耦合神经网络%区域能量
圖像融閤%非下採樣Contourlet變換%脈遲耦閤神經網絡%區域能量
도상융합%비하채양Contourlet변환%맥충우합신경망락%구역능량
image fusion%nonsubsampled Contourlet transform(NSCT)%pulse-coupled neural network(PCNN)%region energy
针对多光谱和全色图像的融合,提出了一种NSCT域内基于改进脉冲耦合神经网络(PCNN)和区域能量的融合方法。首先,利用NSCT将图像分解为一个低频子带和多个不同方向的带通子带。然后,对分解后的低频子带采用基于区域能量的自适应加权算法进行融合;在带通方向子带,结合改进的脉冲耦合神经网络,使用带通方向子带系数作为PCNN的外部输入激励,经过PCNN点火获得待融合图像的点火映射图,根据点火时间计算点火映射图的区域能量,通过判决算子选择待融合图像的带通方向子带系数作为融合系数。最后,对融合处理后的NSCT变换系数进行重构生成融合图像。实验结果显示:在迭代次数为100次时,与改进小波算法相比,标准差提高了9.48%,熵提高了0.95%,相关系数提高了21.56%,偏差指数降低了29.66%;与Contourlet算法相比,标准差提高了9.73%,熵提高了0.94%,相关系数提高了11.27%,偏差指数降低了9.45%;与NSCT算法相比,标准差提高了3.84%,熵提高了3.34%,相关系数提高了7.89%,偏差指数降低了7.42%。
針對多光譜和全色圖像的融閤,提齣瞭一種NSCT域內基于改進脈遲耦閤神經網絡(PCNN)和區域能量的融閤方法。首先,利用NSCT將圖像分解為一箇低頻子帶和多箇不同方嚮的帶通子帶。然後,對分解後的低頻子帶採用基于區域能量的自適應加權算法進行融閤;在帶通方嚮子帶,結閤改進的脈遲耦閤神經網絡,使用帶通方嚮子帶繫數作為PCNN的外部輸入激勵,經過PCNN點火穫得待融閤圖像的點火映射圖,根據點火時間計算點火映射圖的區域能量,通過判決算子選擇待融閤圖像的帶通方嚮子帶繫數作為融閤繫數。最後,對融閤處理後的NSCT變換繫數進行重構生成融閤圖像。實驗結果顯示:在迭代次數為100次時,與改進小波算法相比,標準差提高瞭9.48%,熵提高瞭0.95%,相關繫數提高瞭21.56%,偏差指數降低瞭29.66%;與Contourlet算法相比,標準差提高瞭9.73%,熵提高瞭0.94%,相關繫數提高瞭11.27%,偏差指數降低瞭9.45%;與NSCT算法相比,標準差提高瞭3.84%,熵提高瞭3.34%,相關繫數提高瞭7.89%,偏差指數降低瞭7.42%。
침대다광보화전색도상적융합,제출료일충NSCT역내기우개진맥충우합신경망락(PCNN)화구역능량적융합방법。수선,이용NSCT장도상분해위일개저빈자대화다개불동방향적대통자대。연후,대분해후적저빈자대채용기우구역능량적자괄응가권산법진행융합;재대통방향자대,결합개진적맥충우합신경망락,사용대통방향자대계수작위PCNN적외부수입격려,경과PCNN점화획득대융합도상적점화영사도,근거점화시간계산점화영사도적구역능량,통과판결산자선택대융합도상적대통방향자대계수작위융합계수。최후,대융합처리후적NSCT변환계수진행중구생성융합도상。실험결과현시:재질대차수위100차시,여개진소파산법상비,표준차제고료9.48%,적제고료0.95%,상관계수제고료21.56%,편차지수강저료29.66%;여Contourlet산법상비,표준차제고료9.73%,적제고료0.94%,상관계수제고료11.27%,편차지수강저료9.45%;여NSCT산법상비,표준차제고료3.84%,적제고료3.34%,상관계수제고료7.89%,편차지수강저료7.42%。
A fusion method of multispectral (MS) and panchromatic (PAN) images based on improved Pulse-Coupled Neural Network(PCNN) and region energy in Nonsubsampled Contourlet Transform(NSCT) domain was proposed. Firstly, the two original images were decomposed into a low frequency subband and more bandpass directional subbands by NSCT. Then, for the low frequency subband coefficients, an adaptive regional energy weighting image fusion algorithm was presented; while for the bandpass directional subband coefficients, based on improved PCNN, the bandpass directional subband coefficients was used as the linking strength. After processing PCNN with the linking strength, new fire mapping images were obtained. The fire mapping image region energy was calculated, and the fusion coefficients were decided by the compare-selection operator with the fire mapping image region energy. Finally, the fusion images were reconstructed by NSCT inverse transform. The experimental results show that, when the numbers of iterations are 100 times, respectively as comparing with that of improved wavelet method, Contourlet method and NSCT method: the standard deviation increases by 9.48%, 9.73% and 3.84%; the entropy by 0.95% , 0.94% and 3.34%; the correlation coefficient by 21.56%, 11.27% and 7.89%, and the deviation index reduces by 29.66%, 9.45% and 7.42%.