红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
11期
2974-2978
,共5页
内遮光罩%GCF%辐射角系数%杂散光
內遮光罩%GCF%輻射角繫數%雜散光
내차광조%GCF%복사각계수%잡산광
inner-shield%GCF%radiation shape factor%stray light
空间太阳望远镜(Space Solar Telescope,SST)主光学望远镜(Main Optical Telescope,MOT)口径达1 m,以2.8’×1.5’有效视场对日成像,将获得0.1"~0.15"的图像。SST MOT对日观测时所接收到的热量超过千瓦,成为影响望远镜成像质量的主要热源和杂散光源。为此,文中首先探讨了大口径太阳望远镜热设计与消杂光设计的特殊关联。然后,针对主镜筒内消杂散光的内遮光罩结构提出了热兼容设计,确定了内遮光罩结构热-杂散光效应集成设计的目标与评价体系。借助热分析软件获取SST MOT因内遮光罩结构参数变化引起的系统温度的变化趋势,从热控角度对内遮光罩结构的设计提出了建议:内遮光罩结构的垂直高度不宜超过400 mm。探索的内遮光罩结构热-杂散光效应集成分析方法也可为其他太阳望远镜的综合优化提供参考。
空間太暘望遠鏡(Space Solar Telescope,SST)主光學望遠鏡(Main Optical Telescope,MOT)口徑達1 m,以2.8’×1.5’有效視場對日成像,將穫得0.1"~0.15"的圖像。SST MOT對日觀測時所接收到的熱量超過韆瓦,成為影響望遠鏡成像質量的主要熱源和雜散光源。為此,文中首先探討瞭大口徑太暘望遠鏡熱設計與消雜光設計的特殊關聯。然後,針對主鏡筒內消雜散光的內遮光罩結構提齣瞭熱兼容設計,確定瞭內遮光罩結構熱-雜散光效應集成設計的目標與評價體繫。藉助熱分析軟件穫取SST MOT因內遮光罩結構參數變化引起的繫統溫度的變化趨勢,從熱控角度對內遮光罩結構的設計提齣瞭建議:內遮光罩結構的垂直高度不宜超過400 mm。探索的內遮光罩結構熱-雜散光效應集成分析方法也可為其他太暘望遠鏡的綜閤優化提供參攷。
공간태양망원경(Space Solar Telescope,SST)주광학망원경(Main Optical Telescope,MOT)구경체1 m,이2.8’×1.5’유효시장대일성상,장획득0.1"~0.15"적도상。SST MOT대일관측시소접수도적열량초과천와,성위영향망원경성상질량적주요열원화잡산광원。위차,문중수선탐토료대구경태양망원경열설계여소잡광설계적특수관련。연후,침대주경통내소잡산광적내차광조결구제출료열겸용설계,학정료내차광조결구열-잡산광효응집성설계적목표여평개체계。차조열분석연건획취SST MOT인내차광조결구삼수변화인기적계통온도적변화추세,종열공각도대내차광조결구적설계제출료건의:내차광조결구적수직고도불의초과400 mm。탐색적내차광조결구열-잡산광효응집성분석방법야가위기타태양망원경적종합우화제공삼고。
The SST (Space Solar Telescope) is designed to obtain its diffraction limit quality with aperture over 1m. It observes the sun with a small view field of 2.8’í1.5’ to obtain its high spatial resolution imaging of 0 . 1"-0 . 15". SST observing the sun directly can receive huge heat flow more than 1 000 W that will lead to unacceptable thermal distortion of the optical components. The sunlight enters into the telescope, which is an intense source of both heat and stray light. Based on the special thermal effect and stray light in the solar telescope, a compatibility analysis of the thermal effect of inner-shield in SST was performed. The relationship between the thermal control design and scatting elimination plan on the inner-shield structures in SST was presented. The objective and method of the compatibility analysis were determined. With the thermal analysis software, the temperature fields were calculated for a series of heights of inner-shield structure. A design of the inner-shield structure was put forward in thermal control terms and the suggestion was put out synchronously, which restrained the inner-shield with the height less than 400 mm. The aims of the optimal design of the inner-shield structure of SST are reached. The thoughts and methods of the optimal analysis are also useful for similar optical telescopes designed for solar observation.