红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
11期
2957-2961
,共5页
许兆美%周建忠%黄舒%孙全平
許兆美%週建忠%黃舒%孫全平
허조미%주건충%황서%손전평
激光铣削%人工神经网络%陶瓷%工艺参数
激光鐉削%人工神經網絡%陶瓷%工藝參數
격광선삭%인공신경망락%도자%공예삼수
laser milling%ANN network%ceramics%process parameters
为了有效地控制 Al2O3陶瓷激光铣削层质量,以人工神经网络(ANN)技术为基础,以MATLAB软件作为开发平台,建立了Al2O3陶瓷激光铣削层质量与铣削参数之间的关系模型。并以激光功率、扫描速度和离焦量作为输入参数,激光铣削层深度和宽度作为输出参数,对激光铣削层质量进行了预测。结果表明,该模型的平均误差小,拟合精度高。并在训练样本之外,选取了5组工艺参数来检验网络模型的可靠性,检验输出值和实验样本值的最大相对误差为7.06%。说明运用该模型可以方便、准确地选择激光工艺参数,提高Al2O3陶瓷激光铣削层的加工质量。
為瞭有效地控製 Al2O3陶瓷激光鐉削層質量,以人工神經網絡(ANN)技術為基礎,以MATLAB軟件作為開髮平檯,建立瞭Al2O3陶瓷激光鐉削層質量與鐉削參數之間的關繫模型。併以激光功率、掃描速度和離焦量作為輸入參數,激光鐉削層深度和寬度作為輸齣參數,對激光鐉削層質量進行瞭預測。結果錶明,該模型的平均誤差小,擬閤精度高。併在訓練樣本之外,選取瞭5組工藝參數來檢驗網絡模型的可靠性,檢驗輸齣值和實驗樣本值的最大相對誤差為7.06%。說明運用該模型可以方便、準確地選擇激光工藝參數,提高Al2O3陶瓷激光鐉削層的加工質量。
위료유효지공제 Al2O3도자격광선삭층질량,이인공신경망락(ANN)기술위기출,이MATLAB연건작위개발평태,건립료Al2O3도자격광선삭층질량여선삭삼수지간적관계모형。병이격광공솔、소묘속도화리초량작위수입삼수,격광선삭층심도화관도작위수출삼수,대격광선삭층질량진행료예측。결과표명,해모형적평균오차소,의합정도고。병재훈련양본지외,선취료5조공예삼수래검험망락모형적가고성,검험수출치화실험양본치적최대상대오차위7.06%。설명운용해모형가이방편、준학지선택격광공예삼수,제고Al2O3도자격광선삭층적가공질량。
In order to control the quality of Al2O3 ceramics, based on the artificial neural network (ANN), a model was established to describe the relation between the laser milling quality of Al2O3 ceramics with the ceramics parameters. The milling quality of Al2O3 ceramics were predicted with the model in which the input parameters consisted of laser power, scanning speed and defocus amount and the output parameters included the milling depth and width. The results show that the mean error is small, and the model has good verifying precision and excellent ability of predicting. Five group process parameters were chosen to test the reliability of the neural network model out of the train samples. The maximum relative error of the output test value and the experiment sample value was 7.06%. The laser process parameters can be chosen easily and accurately to improve the processing quality of Al2O3 ceramics.