智能计算机与应用
智能計算機與應用
지능계산궤여응용
Computer Study
2014年
2期
68-71
,共4页
中文电子病历%无监督分词%EM算法%分支信息熵%动态规划
中文電子病歷%無鑑督分詞%EM算法%分支信息熵%動態規劃
중문전자병력%무감독분사%EM산법%분지신식적%동태규화
Chinese EMRs%Unsupervised Segmentation%EM Algorithm%Branching Entropy%Dynamic Programming
电子病历中包含大量有用的医疗知识,抽取这些知识对于构建临床决策支持系统和个性化医疗健康信息服务具有重要意义。自动分词是分析和挖掘中文电子病历的关键基础。为了克服获取标注语料的困难,提出了一种基于无监督学习的中文电子病历分词方法。首先,使用通用领域的词典对电子病历进行初步的切分,为了更好地解决歧义问题,引入概率模型,并通过 EM算法从生语料中估计词的出现概率。然后,利用字串的左右分支信息熵构建良度,将未登录词识别转化为最优化问题,并使用动态规划算法进行求解。最后,在3000来自神经内科的中文电子病历上进行实验,证明了该方法的有效性。
電子病歷中包含大量有用的醫療知識,抽取這些知識對于構建臨床決策支持繫統和箇性化醫療健康信息服務具有重要意義。自動分詞是分析和挖掘中文電子病歷的關鍵基礎。為瞭剋服穫取標註語料的睏難,提齣瞭一種基于無鑑督學習的中文電子病歷分詞方法。首先,使用通用領域的詞典對電子病歷進行初步的切分,為瞭更好地解決歧義問題,引入概率模型,併通過 EM算法從生語料中估計詞的齣現概率。然後,利用字串的左右分支信息熵構建良度,將未登錄詞識彆轉化為最優化問題,併使用動態規劃算法進行求解。最後,在3000來自神經內科的中文電子病歷上進行實驗,證明瞭該方法的有效性。
전자병력중포함대량유용적의료지식,추취저사지식대우구건림상결책지지계통화개성화의료건강신식복무구유중요의의。자동분사시분석화알굴중문전자병력적관건기출。위료극복획취표주어료적곤난,제출료일충기우무감독학습적중문전자병력분사방법。수선,사용통용영역적사전대전자병력진행초보적절분,위료경호지해결기의문제,인입개솔모형,병통과 EM산법종생어료중고계사적출현개솔。연후,이용자천적좌우분지신식적구건량도,장미등록사식별전화위최우화문제,병사용동태규화산법진행구해。최후,재3000래자신경내과적중문전자병력상진행실험,증명료해방법적유효성。
Electronic medical records ( EMR) contain a lot of useful medical knowledge .Extracting these knowledge are im-portant for building clinical decision support system and personalized healthcare information service .Automatic word seg-mentation is a key precursor for analysis and mining of Chinese EMRs .In order to overcome the difficulties of obtaining la-beled corpus , the paper proposes an unsupervised approach to word segmentation in Chinese EMRs .First, the paper uses a lexicon of general domain to generate an initial segmentation .To deal with the ambiguity problem , the paper also builds a probabilistic model .The probabilities of words are estimated by an EM procedure .Then the paper uses the left and right branching entropy to build goodness measure and regards the recognition of unknown words as an optimization problem which can be solved by dynamic programming .Finally, to prove the effectiveness of our approach , experiments are conduc-ted on 3,000 copies of Chinese EMRs from the Department of Neurology .