电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2013年
12期
3482-3488
,共7页
徐立新%杨建梅%潮铸%刘明波
徐立新%楊建梅%潮鑄%劉明波
서립신%양건매%조주%류명파
电力系统%时间间隔%幂律分布%Hurst指数%R/S方法%SWV方法
電力繫統%時間間隔%冪律分佈%Hurst指數%R/S方法%SWV方法
전력계통%시간간격%멱률분포%Hurst지수%R/S방법%SWV방법
electric power grid%time interval%power law distribution%Hurst exponent%R/S method%SWV method
为了研究电网故障的内在动力学机理,以广东电网为例研究了电网故障时间间隔序列的统计分布及非线性特征。首先检验和分析了2000年8月-2013年4月电网故障的统计分布特性,结果表明电网发生故障的时间间隔具有阵发和厚尾现象,近似满足幂律分布。然后应用R/S(rescaled range analysis)和SWV(scaled windowed variance)2种Hurst指数分析方法,求得广东电网故障时间间隔序列的 Hurst 指数,分别为0.86701和0.97414,两者均显著地接近1,结论具有一致性。这揭示了电网发生故障的时间间隔不仅是非随机的,而且具有强的长程正相关性和自相似性。研究故障的时间间隔特征可以为电网进行风险预测和风险评估提供决策依据。
為瞭研究電網故障的內在動力學機理,以廣東電網為例研究瞭電網故障時間間隔序列的統計分佈及非線性特徵。首先檢驗和分析瞭2000年8月-2013年4月電網故障的統計分佈特性,結果錶明電網髮生故障的時間間隔具有陣髮和厚尾現象,近似滿足冪律分佈。然後應用R/S(rescaled range analysis)和SWV(scaled windowed variance)2種Hurst指數分析方法,求得廣東電網故障時間間隔序列的 Hurst 指數,分彆為0.86701和0.97414,兩者均顯著地接近1,結論具有一緻性。這揭示瞭電網髮生故障的時間間隔不僅是非隨機的,而且具有彊的長程正相關性和自相似性。研究故障的時間間隔特徵可以為電網進行風險預測和風險評估提供決策依據。
위료연구전망고장적내재동역학궤리,이엄동전망위례연구료전망고장시간간격서렬적통계분포급비선성특정。수선검험화분석료2000년8월-2013년4월전망고장적통계분포특성,결과표명전망발생고장적시간간격구유진발화후미현상,근사만족멱률분포。연후응용R/S(rescaled range analysis)화SWV(scaled windowed variance)2충Hurst지수분석방법,구득엄동전망고장시간간격서렬적 Hurst 지수,분별위0.86701화0.97414,량자균현저지접근1,결론구유일치성。저게시료전망발생고장적시간간격불부시비수궤적,이차구유강적장정정상관성화자상사성。연구고장적시간간격특정가이위전망진행풍험예측화풍험평고제공결책의거。
Electric power grid is an artificial complex system for transmitting and interchanging energy, where the blackouts are usually caused by various small faults. To study the internal dynamics mechanism of power grid faults, taking Guangdong power grid as example the statistical distribution and nonlinear characteristic analysis of fault time intervals of power grid is researched. Firstly, the statistical distribution characteristics of power grid faults occurred from Aug. 2000 to Apr. 2013 are verified and analyzed, and analysis results show that the fault time intervals possess the features of intermittency and heavy-tail, and approximately distribute according to power-law distribution. Utilizing two Hurst exponent analysis methods, namely the rescaled range analysis (R/S) method and the scaled windowed variance (SWV) method, the Hurst exponents of fault time intervals of Guangndong power grid are solved, they are 0.867 01 and 0.97414 respectively and evidently close to 1, so they are of consistency. It reveals that the fault time intervals of power grid are not only non-random, but also possess strong positive correlation and self-similarity. The research on fault time intervals can provide decision foundation for risk prediction and risk assessment of power grid.