中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2012年
16期
189-195
,共7页
郝艳捧%刘耀阁%涂恩来%戴栋
郝豔捧%劉耀閣%塗恩來%戴棟
학염봉%류요각%도은래%대동
介质阻挡放电%多脉冲%增强型电子耦合器件%辉%光放电%径向演化
介質阻擋放電%多脈遲%增彊型電子耦閤器件%輝%光放電%徑嚮縯化
개질조당방전%다맥충%증강형전자우합기건%휘%광방전%경향연화
dielectric barrier discharge%multipeak%intensified charge-coupled device (ICCD)%glow discharge,radial development
介质阻挡放电(dielectric barrier discharge,DBD)的径向演化及其影响因素对研究低温等离子体的机制具有重要的参考价值。采用铟锡氧化物(indium tin oxide,ITO)透明电极,进行了大气压氦气介质阻挡三脉冲辉光放电试验,利用增强型电子耦合器件(intensi fied charge.coupleddevice,ICCD)拍摄放电的侧面短时曝光照片来诊断放电模式,拍摄放电的底面短时曝光照片并绘制其发光灰度值在电极表面的三维分布图来研究放电的径向演化过程。结果表明:放电首先在圆形电极的边缘区域发生,逐渐向电极中心发展,最后又转向电极边缘并逐渐减弱;随着电流脉冲次序的增加,放电在电极中心发展越来越充分;电极结构的限流作用同外施电压和介质表面电荷一样,对径向位置上不同时刻的放电演化过程起着重要作用。
介質阻擋放電(dielectric barrier discharge,DBD)的徑嚮縯化及其影響因素對研究低溫等離子體的機製具有重要的參攷價值。採用銦錫氧化物(indium tin oxide,ITO)透明電極,進行瞭大氣壓氦氣介質阻擋三脈遲輝光放電試驗,利用增彊型電子耦閤器件(intensi fied charge.coupleddevice,ICCD)拍攝放電的側麵短時曝光照片來診斷放電模式,拍攝放電的底麵短時曝光照片併繪製其髮光灰度值在電極錶麵的三維分佈圖來研究放電的徑嚮縯化過程。結果錶明:放電首先在圓形電極的邊緣區域髮生,逐漸嚮電極中心髮展,最後又轉嚮電極邊緣併逐漸減弱;隨著電流脈遲次序的增加,放電在電極中心髮展越來越充分;電極結構的限流作用同外施電壓和介質錶麵電荷一樣,對徑嚮位置上不同時刻的放電縯化過程起著重要作用。
개질조당방전(dielectric barrier discharge,DBD)적경향연화급기영향인소대연구저온등리자체적궤제구유중요적삼고개치。채용인석양화물(indium tin oxide,ITO)투명전겁,진행료대기압양기개질조당삼맥충휘광방전시험,이용증강형전자우합기건(intensi fied charge.coupleddevice,ICCD)박섭방전적측면단시폭광조편래진단방전모식,박섭방전적저면단시폭광조편병회제기발광회도치재전겁표면적삼유분포도래연구방전적경향연화과정。결과표명:방전수선재원형전겁적변연구역발생,축점향전겁중심발전,최후우전향전겁변연병축점감약;수착전류맥충차서적증가,방전재전겁중심발전월래월충분;전겁결구적한류작용동외시전압화개질표면전하일양,대경향위치상불동시각적방전연화과정기착중요작용。
Radial development of dielectric barrier discharge (DBD) and its influencing factors are of importance in studying the mechanism of low-temperature plasmas. Three-pulse dielectric barrier glow discharge was carried out using an ITO transparent electrode. Short exposure time images from side direction of the gas gap were taken with an intensified charge-coupled device (ICCD) to diagnosedischarge modes. And the radial development was discussed by taking end-view images and drawing the corresponding three-dimensional light distribution. It was found that the discharge first originates at the peripheral part of the electrode, develops to the center and then turns to the periphery again and declines gradually. And the discharge develops more strongly in the central part as the sequence of pulses increases. The current limitation of the electrode structure together with the applied voltage and the surface charges plays a key role in the different discharging time in the radial direction.