软件
軟件
연건
SOFT WARE
2013年
11期
73-76
,共4页
汉语情感倾向自动分类%基于情感词%基于规则%TSVM
漢語情感傾嚮自動分類%基于情感詞%基于規則%TSVM
한어정감경향자동분류%기우정감사%기우규칙%TSVM
Chinese emotional tendencies automatic classiifcation%based on emotion word%based on rules%TSVM
随着WEB2.0的迅猛发展,汉语情感倾向分类在许多不同的领域取得了广泛的应用。同时,文本情感倾向分类也是当前学术界的热门课题之一。本文旨在探究一种汉语情感倾向分类方法,通过构造一种自动分类系统,对商品评价信息进行正类、负类和中立的三分类。本文采用一个两级分类系统实现三分类,首先第一级将文本分为极性和中立两部分,然后第二级再将极性文本分为正类和负类。在文本分类方法方面,采用了基于情感词、基于规则和TSVM等不同的方法。本文最后组织了分类实验对系统效果加以验证,并对实验结果进行了分析。
隨著WEB2.0的迅猛髮展,漢語情感傾嚮分類在許多不同的領域取得瞭廣汎的應用。同時,文本情感傾嚮分類也是噹前學術界的熱門課題之一。本文旨在探究一種漢語情感傾嚮分類方法,通過構造一種自動分類繫統,對商品評價信息進行正類、負類和中立的三分類。本文採用一箇兩級分類繫統實現三分類,首先第一級將文本分為極性和中立兩部分,然後第二級再將極性文本分為正類和負類。在文本分類方法方麵,採用瞭基于情感詞、基于規則和TSVM等不同的方法。本文最後組織瞭分類實驗對繫統效果加以驗證,併對實驗結果進行瞭分析。
수착WEB2.0적신맹발전,한어정감경향분류재허다불동적영역취득료엄범적응용。동시,문본정감경향분류야시당전학술계적열문과제지일。본문지재탐구일충한어정감경향분류방법,통과구조일충자동분류계통,대상품평개신식진행정류、부류화중립적삼분류。본문채용일개량급분류계통실현삼분류,수선제일급장문본분위겁성화중립량부분,연후제이급재장겁성문본분위정류화부류。재문본분류방법방면,채용료기우정감사、기우규칙화TSVM등불동적방법。본문최후조직료분류실험대계통효과가이험증,병대실험결과진행료분석。
Along with the rapid development of WEB2.0, automatic sentiment orientation classification gets globally used in various areas. Also, it is one of the most popular topics in the academia. The goal of this research is to construct an automatic classiifer and identify the sentimental orientation of merchandise comments, dividing these texts into three categories:positive, negative and neutral. This paper applies a two-level classiifcation system to accomplish the goal. First, the level-one system divides the corpus into polarity part, which consists of positive and negative texts, and neutral part. Then, the level-two system divides the polarity corpus into positive part and negative part. As for the method to texts classiifcation, different methods as sentimental word based, rule based and TSVM are used. At the end of this paper, several experiments are conducted to verify the effect of the system, followed by the analysis of the experiment results.