商丘师范学院学报
商丘師範學院學報
상구사범학원학보
JOURNAL OF SHANGQIU TEACHERS COLLEGE
2013年
12期
75-77
,共3页
彩色人民币编号%K-means聚类%图像分割
綵色人民幣編號%K-means聚類%圖像分割
채색인민폐편호%K-means취류%도상분할
color the RMB serial number%K-means clustering%image segmentation
目前我国流通的人民币都是彩色图像,且携带不同程度的噪声,本文提出用K-means聚类算法对人民币编号进行分割提取,为改进算法的抗噪能力,考虑了图像当前像素点与相邻像素间的影响,实验结果表明,本算法对彩色人民币编号的分割具有自适应性,分割效果较好,鲁棒性强。
目前我國流通的人民幣都是綵色圖像,且攜帶不同程度的譟聲,本文提齣用K-means聚類算法對人民幣編號進行分割提取,為改進算法的抗譟能力,攷慮瞭圖像噹前像素點與相鄰像素間的影響,實驗結果錶明,本算法對綵色人民幣編號的分割具有自適應性,分割效果較好,魯棒性彊。
목전아국류통적인민폐도시채색도상,차휴대불동정도적조성,본문제출용K-means취류산법대인민폐편호진행분할제취,위개진산법적항조능력,고필료도상당전상소점여상린상소간적영향,실험결과표명,본산법대채색인민폐편호적분할구유자괄응성,분할효과교호,로봉성강。
At present , the circulation of RMB in China are color images , and carry different levels of noise ,using K-means clustering algorithm to extract and split RMB No .is proposed in this paper ,in order to improve the anti-noise of the algorithm ,consider the image pixel point impact between adjacent pixels , the experimental results show that the algorithm has adaptivity characteristic for color RMB serial number segmentation , which has better segmentation and robustness as well .